论文:2019,Vol:37,Issue(5):983-991
引用本文:
屈正宇, 杨燕初, 闫峰. 高空微型飞行器滑翔轨迹特性优化研究[J]. 西北工业大学学报
QU Zhengyu, YANG Yanchu, YAN Feng. Optimization Study of High Altitude Micro Gliding Air Vehicle Re-Entry Path Characteristics[J]. Northwestern polytechnical university

高空微型飞行器滑翔轨迹特性优化研究
屈正宇, 杨燕初, 闫峰
中国科学院 光电研究院, 北京 100190
摘要:
基于滑翔式微型飞行器(micro gliding air vehicle,MGAV)的布局、投射及飞行特点,分析并优化其在不同任务需求下的一般轨迹特性。首先,概述了此种MGAV的设计过程及总体参数;接着,基于一般意义的飞行器平面运动模型,推导出平衡滑翔初始投射条件,并结合实际投射装置参数推导真实初始投射条件。进一步分别比较了在这两种投射条件下的无约束最远射程轨迹特性,真实滑翔比平衡滑翔在射程上减少约5 km。然后,分析了此种飞行器可能存在的任务需求,采用高斯伪谱法得到在过程约束及终端约束下最长滑翔时间及保证滑翔时间及滑翔距离同时最长2种目标函数下的最优滑翔轨迹。第一种目标下,优化后航时和无控滑翔相比可提高约8 min,但是和理论最远射程136 km相比缩短20 km。第二种目标下,在最远射程维持不变的同时可使航时提高约2 min。最后,将优化轨迹的控制变量带入到动力学方程积分进行可行性验证。研究结果表明,基于高斯伪谱法的轨迹分析是一种高效可行的轨迹优化策略。
关键词:    滑翔式微型飞行器    轨迹特性    高斯伪谱法    低雷诺数    平板翼型   
Optimization Study of High Altitude Micro Gliding Air Vehicle Re-Entry Path Characteristics
QU Zhengyu, YANG Yanchu, YAN Feng
Academy of Opto-Electronics, Chinese Academy of Science, Beijing 100190, China
Abstract:
Based on the characteristics of the configuration and flight of the micro gliding air vehicle (MGAV), an analysis and optimization for general gliding path of different mission demands is carried out. Firstly, an overall design method and parameters are summarized. Secondly, the equilibrium glide launching parameters are determined based on the general aircraft re-entry equation. The real launching parameter are also developed by considering the real launching facility. Furthermore, the un-controlled maximum-range-towards path characteristics for the real and equilibrium glide are compared and analyzed. The range in equilibrium glide is 5 km larger than real glide. Then, two potential flight demand are explained and the Gauss pseudo-spectral method is adopted to solve the maximum endurance and the maximum endurance and range with the process constraint and final constraint. The first target is 8 minutes longer than the original glide path but the range is 20 km less compared to the maximum range. The second target could keep the maximum range and at the meantime, the endurance could be increased 2 minutes. Finally, the control variables are substituted into the dynamic equations to validate the results. The result shows that the Gauss pseudo-spectral method is an effective and feasible way to solve the optimum gliding path.
Key words:    micro gliding air vehicle    gliding path characteristics    Gauss pseudo-spectral method    low Reynolds number    flat plate airfoil   
收稿日期: 2018-10-12     修回日期:
DOI: 10.1051/jnwpu/20193750983
通讯作者:     Email:
作者简介: 屈正宇(1990-),中国科学院光电研究院工程师,主要从事微型飞行器设计与优化及流动控制研究。
相关功能
PDF(1775KB) Free
打印本文
把本文推荐给朋友
作者相关文章
屈正宇  在本刊中的所有文章
杨燕初  在本刊中的所有文章
闫峰  在本刊中的所有文章

参考文献:
[1] 肖永利,张琛. 微型飞行器的研究现状与关键技术[J]. 宇航学报, 2001, 22(5):26-32 XIAO Yongli, ZHANG Chen. Study on Present Situation and Development of Micro Air Vehicles[J]. Journal of Astronautics, 1992, 18(5):585-589(in Chinese)
[2] HUNDLEY R O, GRITTON E C. Future Technology-Driven Revolutions in Military Operations[R]. DB-110-ARPA, 1994
[3] WASZAK M R, DAVIDSON J B, IFJU P G. Simulation and Flight Control of an Aeroelastic Fixed Wing Micro Aerial Vehicle[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Monterey, CA, 2002
[4] GRASMEYER J, KEENNON M. Development of the Black Widow Micro Air Vehicle[C]//AIAA 39th Aerospace Sciences Meeting and Exhibit, Reno, NV, 2001
[5] KAHN A, EDWARDS D. Navigation, Guidance and Control for the Cicada Expendable Micro Air Vehicle[C]//AIAA Guidance, Navigation and Control Conference, 2012
[6] EDWARDS D J, KAHN A D, HEINZEN S B, et al. CICADA Flying Circuit Board Unmanned Aerial Vehicle[C]//2018 AIAA Aerospace Sciences Meeting, 2018
[7] LAIACKER M, WLACH S, SCHWARZBACH M. DLR High Altitude Balloon Launched Experimental Glider(Hableg):System Design, Control and Flight Data Analysis[C]//Workshop on Research, 2016
[8] 闫晓东,唐硕. 基于伪谱法的亚轨道飞行器返回轨迹优化设计[J]. 西北工业大学学报, 2010, 28(5):748-752 YAN Xiaodong, TANG San. Applying Pseudo-Spectral Method to Optimizing Entry Trajectory of Suborbital Launch Vehicle[J]. Journal of Northwestern Polytechnical University, 2010, 28(5):748-752(in Chinese)
[9] 陈小庆,侯中喜,刘建霞. 高超声速滑翔飞行器弹道特性分析[J]. 导弹与航天运载技术, 2011(2):5-9 CHEN Xiaoqing, HOU Zhongxi, LIU Jianxia. Trajectory Characteristic of Hypersonic Gliding Vehicle[J]. Missiles and Space Vehicles, 2011(2):5-9(in Chinese)
[10] 李广华,张洪波,汤国建. 高超声速滑翔飞行器典型弹道特性分析[J]. 宇航学报, 2015, 36(4):397-403 LI Ghuanghua, ZHANG Hongbo, TANG Guojian. Typical Trajectory Characteristics of Hypersonic Glide Vehicle[J]. Journal of Astronautics, 2015, 36(4):397-403(in Chinese)
[11] 高显忠. 基于重力势与风梯度的太阳能飞行器HALE问题研究[D]. 合肥:国防科学技术大学, 2014 GAO Xianzhong. Research on High-Altitude Long-Endurance Flight of Solar-Powered Aircraft Based on Gravitational Potential and Wind Shear[D]. Hefei, National University of Defense Technology, 2014(in Chinese)
[12] SHKARAYEV S V, IFJU P G, KELLOGG J C, et al. Introduction to the Design of Fixed-Wing Micro Air Vehicles Including Three Case Studies[M]. American Institute of Aeronautics and Astronautics, 2007
[13] VINH N X. Optimal Trajectories in Atmospheric Flight[M]. Elsevier Scientific Publishing Company, New York, 1981
[14] TORRES G E, MUELLER T J. Low Aspect Ratio Aerodynamics at Low Reynolds Numbers[J]. AIAA Journal, 2004, 42(5):865-873
[15] PELLETIER A, MUELLER T J. Low Reynolds Number Aerodynamics of Low-Aspect-Ratio, Thin/Flat/Cambered-Plate Wings[J]. Journal of Aircraft, 2012, 37(5):825-832
[16] ANANDA G K, SUKUMAR P P, SELIG M S. Measured Aerodynamic Characteristics of Wings at Low Reynolds Numbers[J]. Aerospace Science and Technology, 2015, 42:392-406
[17] OKAMOTO M, AZUMA A. Aerodynamic Characteristics at Low Reynolds Numbers for Wings of Various Planforms[J]. AIAA Journal, 2011, 49(6):1135-1150
[18] ZIPFEL P H. Modeling and Simulation of Aerospace Vehicle Dynamics[M]. American Institute of Aeronautics and Astronautics, 2007
[19] 韩子鹏. 箭弹外弹道学[M]. 北京:北京理工大学出版社, 2014 HAN Zipeng. Exterior Ballistics of Projectiles and Rockets[M]. Beijing, Beijing Institute of Technology Press, 2014(in Chinese)
[20] FERREIRA L O. Nonlinear Dynamics and Stability of Hypersonic Reentry Vehicles[D]. Michigan, University of Michigan,1995
[21] POLHAMUS E C. Predictions of Vortex-Lift Characteristics by a Leading-Edge-Suction Analogy[J]. Journal of Aircraft, 1971, 8(4):193-199