论文:2019,Vol:37,Issue(5):903-908
引用本文:
王飞, 马玉娥, 郭妍宁, 黄玮. 基于近场动力学理论的功能梯度材料瞬态热响应研究[J]. 西北工业大学学报
WANG Fei, MA Yu'e, GUO Yanning, HUANG Wei. Study on Transient Thermal Response for Functionally Graded Materials Based on Peridynamic Theory[J]. Northwestern polytechnical university

基于近场动力学理论的功能梯度材料瞬态热响应研究
王飞, 马玉娥, 郭妍宁, 黄玮
西北工业大学 航空学院, 陕西 西安 710072
摘要:
基于近场动力学(peridynamics,简称PD)理论推导了功能梯度材料(functionally graded materials,简称FGMs)的热传导控制方程,给出FGM简化微热导率模型与PD热传导方程离散过程及数值计算格式。编写了PD热传导数值计算FORTRAN程序,并与有限元解及解析解对比验证了程序正确性。计算了以钛合金表面涂覆氧化锆的FGM矩形板温度分布,研究了组分分布形状、孔隙率以及边界温度对FGM瞬态热响应的影响。结果表明:组分形状分布系数增大,使得陶瓷材料占比提高导致FGMs隔热性能增加;孔隙率对温度分布的影响随传热时间的增加而增加,导致FGMs隔热性能降低;温度荷载的升高只会影响FGM陶瓷区一定厚度内的温度响应,该温度分布厚度随传热时间的增加而增大。
关键词:    近场动力学    瞬态热传导    功能梯度材料    温度分布    组分    孔隙率    钛合金表面涂覆氧化锆    简化微热导率模型   
Study on Transient Thermal Response for Functionally Graded Materials Based on Peridynamic Theory
WANG Fei, MA Yu'e, GUO Yanning, HUANG Wei
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The transient heat conduction formula of functionally graded materials (FGMs) is presented based on peridynamics (PD). The simplified micro-heat conductivity model for FGMs is proposed and the numerical discretization and the peridynamic numerical formation are also illustrated. A FORTRAN program is coded to implement calculations. The accuracy of the program is verified by comparing the FEM and analytical results with PD solution. The FGM rectangle plate composed by titanium alloy coating zirconium oxide is performed to calculate temperature fields. The effects of material gradient, porosity and temperature load on thermal response are studied. It is shown that the ceramic proportion of FGMs is increased with an increasing material shape parameter and the thermal shielding performance of FGMs is also improved. The effect of the porosity on thermal response is more and more significant with the increasing time step. The increasing temperature load only affects the temperature response of FGM ceramic area. The thickness of temperature distribution area is increased with the increasing of heat conduction time.
Key words:    peridynamic theory    transient heat conduction    functionally graded materials    temperature distribution    material gradient    porosity    titanium alloy coating zirconium oxide    simplified micro-heat conductivity model   
收稿日期: 2018-10-09     修回日期:
DOI: 10.1051/jnwpu/20193750903
基金项目: 国家自然科学基金(11572250)资助
通讯作者:     Email:
作者简介: 王飞(1987-),西北工业大学博士研究生,主要从事固体力学计算研究。
相关功能
PDF(1739KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王飞  在本刊中的所有文章
马玉娥  在本刊中的所有文章
郭妍宁  在本刊中的所有文章
黄玮  在本刊中的所有文章

参考文献:
[1] THAI H T, KIM S E. A Review of Theories for the Modeling and Analysis of Functionally Graded Plates and Shells[J]. Composite Structure, 2015,128(3):70-86
[2] SOBOLEV S L. Equations of Transfer in Non-Local Media[J]. International Journal of Heat & Mass Transfer, 1994, 37(14):2175
[3] GRMELA M, LEBON G. Finite-Speed Propagation of Heat:A Nonlocal and Nonlinear Approach[J]. Physica A Statistical Mechanics and Its Applications, 1998, 248(3/4):428-441
[4] SILLING S A. Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(1):175-209
[5] 王飞, 马玉娥, 郭妍宁. 近场动力学中内核参数对非均匀材料热传导数值解的影响研究[J]. 西北工业大学学报, 2017, 35(2):203-207 WANG Fei, MA Yu'e, GUO Yanning. Effects of Kernel Parameters of Peridynamic Theory on Heat Conduction Numerical Solution for Non-Homogeneous Material[J]. Journal of Northwestern Polytechnical University, 2017, 35(2):203-207(in Chinese)
[6] BOBARU F, DUANGPANYA M. The Peridynamic Formulation for Transient Heat Conduction[J]. International Journal of Heat and Mass Transfer, 2010, 53(19):4047-4059
[7] BOBARU F, DUANGPANYA M. A Peridynamic Formulation for Transient Heat Conduction in Bodies with Evolving Discontinuities[J]. Journal of Computational Physics, 2012, 231(7):2764-2785
[8] OTERKUS S, MADENCI E, AGWAI A. Peridynamic Thermal Diffusion[J]. Journal of Computational Physics, 2014, 265(10):71-96
[9] AGWAI A. A Peridynamic Approach for Coupled Fields[D]. Tucson, University of Arizona, 2011
[10] LIAO Yang, LIU Lisheng, LIU Qiwen, et al. Peridynamic Simulation of Transient Heat Conduction Problems in Functionally Gradient Materials with Cracks[J]. Journal of Thermal Stresses, 2017, 40(12):1484-1501
[11] 刘英凯, 程站起. 功能梯度材料热传导问题的近场动力学模型[J]. 力学季刊, 2018, 39(1):82-89 LIU Yingkai, CHENG Zhanqi. Transient Heat Conduction Model for Functionally Graded Materials Based on Peridynamics[J]. Chinese Quarterly of Mechanics, 2018, 39(1):82-89(in Chinese)
[12] 刘硕, 方国东, 王兵, 等. 近场动力学与有限元方法耦合求解热传导问题[J]. 力学学报, 2018, 50(2):339-348 LIU Shuo, Fang Guodong, Wang Bing, et al. Study of Thermal Conduction Problem Using Coupled Peridynamics and Finite Element Method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2):339-348(in Chinese)
[13] FUKUI Y, TAKASHIMA K, PONTON C B. Measurement of Young's Modulus and Internal Friction of an in Situ Al-Al3Ni Functionally Gradient Material[J]. Journal of Material Science, 1994, 29:2281-2288
[14] OBATA Y, NODA N. Unsteady Thermal Stresses in a Functionally Gradient Material Plate (Analysis of One-Dimensional Unsteady Heat Transfer Problem)[J]. Trans of the Japan Society of Mechanical Engineers Part A, 1993, 59(560):1090-1096