论文:2019,Vol:37,Issue(5):878-885
引用本文:
高颖, 邵群, 闫彬舟, 郭淑霞. 复杂环境下标准抛物方程变步长解法[J]. 西北工业大学学报
GAO Ying, SHAO Qun, YAN Binzhou, GUO Shuxia. Variable Step Size Solution of Standard Parabolic Equation in Complex Environment[J]. Northwestern polytechnical university

复杂环境下标准抛物方程变步长解法
高颖1, 邵群1, 闫彬舟1, 郭淑霞2
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 西北工业大学 无人机特种技术国防重点实验室, 陕西 西安 710065
摘要:
针对标准抛物方程(standard parabolic equation,SPE)的固定步长解法在大范围复杂环境电波传播研究中计算精度与速度难以平衡的问题,提出标准抛物方程的变步长解法。首先,在推导出SSFT解法的误差与步长、频率等因素的关系后,为SPE的变步长解法给出步长的基本选择范围;其次,在满足误差要求条件下对SPE应用的复杂环境进行等级划分,阐述了不同环境因素作用机理及变化趋势对步长要求,为不同的复杂环境等级中选择相应的步长提供依据;最后,利用该方法对典型复杂环境的电波特性进行仿真,仿真结果表明该方法在确保计算精度的情况下,相对于抛物方程的固定步长解法节省时间最高可达71.4%,验证了提出方法的可靠性与高效性,能大幅度提高抛物方程电波预测的计算效率。因此,采用可变步长的抛物方程方法能在保证计算精度的同时,减少计算所占内存及所需时间,极大地提高了计算效率,在大范围复杂环境电磁波传播实时预测应用中具有现实意义。
关键词:    标准抛物方程    固定步长解法    电波传播    变步长解法    混合傅里叶变换   
Variable Step Size Solution of Standard Parabolic Equation in Complex Environment
GAO Ying1, SHAO Qun1, YAN Binzhou1, GUO Shuxia2
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. The Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710065, China
Abstract:
Aiming at the problem that it is difficult to balance the accuracy and velocity of the fixed-step solution of standard parabolic equation in the study of radio wave propagation in a wide range of complex environments, a variable-step solution method of standard parabolic equation is proposed. Firstly, after deducing the relationship between the error of SSFT solution and step size, frequency and other factors;And the basic selection range of step size for SPE variable step size solution is given. Secondly, the action mechanism of different environmental factors and the requirement of changing trend for step size are expounded through simulation, and the complex environment of SPE application is classified according to the requirement of error. Finally, the method is used to simulate the characteristics of the typical complex environment. The simulation results show that the method can save up to 71.4% of the time compared with the fixed-step method of parabolic equation under the condition of ensuring the calculation accuracy. The reliability and efficiency of the proposed method are verified, and the calculation efficiency of the parabolic equation radio wave prediction can be greatly improved. Therefore, the parabolic equation method with variable step size can ensure the accuracy of calculation, reduce the memory and time required for calculation, greatly improves the efficiency of calculation, and has practical significance in the application of real-time prediction of electromagnetic wave propagation in a wide range of complex environments.
Key words:    split-step fourier transform(SSFT)    standard parabolic equation(SPE)    radio wave propagation    variable step    discrete mixed fourier transform(DMFT)    complex environment    simulation    calculation efficiency   
收稿日期: 2018-10-09     修回日期:
DOI: 10.1051/jnwpu/20193750878
基金项目: 国家自然科学基金(61571368)与陕西省重点研发计划项目(2018ZDYL-GY-03-07-02)资助
通讯作者:     Email:
作者简介: 高颖(1965-),西北工业大学副教授,主要从事虚拟现实与复杂电磁环境研究。
相关功能
PDF(2015KB) Free
打印本文
把本文推荐给朋友
作者相关文章
高颖  在本刊中的所有文章
邵群  在本刊中的所有文章
闫彬舟  在本刊中的所有文章
郭淑霞  在本刊中的所有文章

参考文献:
[1] GAO Y, SHAO Q, YAN B, et al. Parabolic Equation Modeling of Electromagnetic Wave Propagation over Rough Sea Surfaces[J]. Sensors, 2019, 19:1252
[2] OZGUN O, KUZUOGLU M. A Domain Decomposition Finite-Element Method for Modeling Electromagnetic Scattering from Rough Sea Surfaces with Emphasis on Near-Forward Scattering[J]. IEEE Trans on Antennas and Propagation, 2018, 67(1):335-345
[3] 张青洪,廖成,盛楠,等. 森林环境电波传播抛物方程模型的改进研究[J]. 物理学报, 2013, 62(20):1-7 ZHANG Qinghong, LIAO Cheng, SHENG Nan, et al. Improvement of Parabolic Equation Model for Radio Wave Propagation in Forest Environment[J]. Journal of Physics, 2013, 62(20):1-7(in Chinese)
[4] 胡绘斌,毛钧杰,柴舜连. 大气折射率剖面在宽角抛物方程中的应用[J]. 微波学报, 2006(1):5-8 HU Huibin, MAO Junjie, CHAI Shunlian. Application of Atmospheric Refractive Index Profile in Wide-Angle Parabolic Equation[J]. Journal of Microwave Science, 2006(1):5-8(in Chinese)
[5] LEONTOVICH M, FOCK V. Solution of the Problem of Propagation of Electromagnetic Waves along the Earth's Surface by the Method of Parabolic Equation[J]. Acad Sci USSR Phys, 1946(7):557-573
[6] DOCKERY D, KUTTLER J R. An Improved Impedance-Boundary Algorithm for Fourier Split-Step Solutions of the Parabolic Wave Equation[J]. IEEE Trans on Antennas and Propagation, 1996, 44(12):1592-1599
[7] JAMES R. Kuttler and Ramakrishna Janaswamy, Improved Fourier Transform Methods for Solving the Parabolic Wave Equation[J]. Radio Science, 2002, 37(2):1-11
[8] APAYDIN G, SEVGI L. A Novel Split-Step Parabolic-Equation Package for Surface-Wave Propagation Prediction along Multiple Mixed Irregular-Terrain Paths[J]. IEEE Trans on Antennas and Propagation, 2010, 52(4):90-27
[9] WANG D, XI X, PU Y, et al. Parabolic Equation Method for Loran-C ASF Prediction over Irregular Terrain[C]//Applied Computational Electromagnetics, 2015:734-737
[10] ZHOU L, MU Z, PU Y, et al. Long-Range Loran-C Ground-Wave Propagation Prediction Based on Adaptive Moving Window Finite-Difference Time-Domain Method with Compute Unified Device Architecture Parallel Computing Techniques[J]. Microwaves Antennas & Propagation Let, 2015, 9(5):413-422
[11] OZGUN O. Recursive Two-Way Parabolic Equation Approach for Modeling Terrain Effects in Tropospheric Propagation[J]. IEEE Trans on Antennas & Propagation, 2009, 57(9):2706-2714
[12] HE Z, ZENG H, CHEN R S. Two-Way Propagation Modeling of Expressway with Vehicles by Using the 3-D ADI-PE Method[J]. IEEE Trans on Antennas and Propagation, 2018, 66(4):2156-2160
[13] HE Z, SU T, YIN H C, et al. Wave Propagation Modeling of Tunnels in Complex Meteorological Environments with Parabolic Equation[J]. IEEE Trans on Antennas and Propagation, 2018, 66(12):6629-6634
[14] SHENG N, ZHONG X M, ZHANG Q, et al. Study of Parabolic Equation Method for Millimeter-Wave Attenuation in Complex Meteorological Environments[J]. Progress in Electromagnetics Research, 2016, 48:173-181
[15] WANG Z, WANG X, BAO Y, et al. Shape Modification by Beam Model in FEM[J]. Chinese Journal of Aeronautics, 2010, 23(2):246-251
[16] LEVY M. Parabolic Equation Methods for Electromagnetic Wave Propagation[J]. IEE Electromagnetic Waves, 2000, 26(1/2/3/4):352
[17] 张青洪, 廖成, 盛楠, 等. 抛物方程方法的非均匀网格技术研究[J]. 电波科学学报, 2013, 28(4):631-636 ZHANG Qinghong, LIAO Cheng, SHENG Nan, Chen L. Non-Uniform Mesh Technology for Parabolic Equation[J]. Journal of Radio Science, 2013, 28(4):635-640(in Chinese)
[18] CHEN Y, QIN W. A Variable Range Step Technique for Propagation Predictions over Large Irregular Terrain Using the Fourier Split-Step Parabolic Equation[C]//Microwave Conference, 2016:1-3
[19] LIEBE H J. MPM-An Atmospheric Millimeter-Wave Propagation Model[J]. International Journal of Infrared and Millimeter Waves, 1989, 10(6):631-650
[20] DONOHUE D J, KUTTLER J R. Propagation Modeling over Terrain Using the Parabolic Wave Equation[J]. IEEE Trans on Antennas and Propagation, 2000, 48(2):260-277
[21] 胡绘斌. 预测复杂环境下电波传播特性的算法研究[D]. 长沙:国防科学技术大学, 2006:46-54 HU Huibin. Algorithms for Predicting Radio Propagation Characteristics in Complex Environments[D]. Changsha, National University of Defense Science and Technology, 2006:46-54(in Chinese)