论文:2019,Vol:37,Issue(4):691-696
引用本文:
陈诚, 袁绪龙, 任耀, 党建军, 刘喜燕. 通气对超空泡航行体自由运动的弹道特性影响试验研究[J]. 西北工业大学学报
CHEN Cheng, YUAN Xulong, REN Yao, DANG Jianjun, LIU Xiyan. Experimental Study on Influence of Ventilation on Trajectory Characteristics of Free Motion of Supercavitating Vehicle[J]. Northwestern polytechnical university

通气对超空泡航行体自由运动的弹道特性影响试验研究
陈诚, 袁绪龙, 任耀, 党建军, 刘喜燕
西北工业大学 航海学院, 陕西 西安 710072
摘要:
为了探究超空泡航行体自由运动过程的弹道特性,开展了无动力航行体在通气和不通气情况下的试验。发射装置使用高压气体将航行体发射出管。利用高速摄像机记录自由航行的空泡形态,同时由内测系统记录运动参数和空泡内压力变化。详细分析了通气和不通气下的试验结果,阐述了通气对航行体运动的影响。试验结果表明:通气情况下,在航行速度和通气率共同影响下,空化数保持在某值附近波动变化,航行体以超空泡状态稳定航行;不通气时,航行体依次以超空泡和闭合于圆柱段的双空泡状态稳定航行,当空泡闭合于航行体肩部时运动失稳。因此,采取通气方式降低空化数有助于维持航行体运动的稳定性。
关键词:    超空泡航行体    自由运动    通气    弹道特性   
Experimental Study on Influence of Ventilation on Trajectory Characteristics of Free Motion of Supercavitating Vehicle
CHEN Cheng, YUAN Xulong, REN Yao, DANG Jianjun, LIU Xiyan
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to study the trajectory characteristics of supercavitating vehicle in free motion, a series of experiments were carried out on an unpowered vehicle under ventilation and non-ventilation conditions respectively. High-pressure gas was utilized to launch the vehicle. The flow pattern in free motion was captured by using a high-speed video camera, the variations in the motion parameters and the cavity pressure were simultaneously recorded by using the internal measuring system. The measured data under ventilation and non-ventilation conditions were analyzed in detail, giving the effect of the ventilation on the motion of the vehicle. The experimental results show that the cavitation number fluctuates around a certain value under the influence of both velocity of the vehicle and the ventilation flow rate, keeping the vehicle to stably move in the supercavitating state. Under non-ventilation condition, the vehicle moves stably at the state of supercavitating and double-cavity closed on at the cylindrical section of the vehicle. But the motion turns into instable when the cavity is closed at the shoulder of the vehicle. Therefore, to reduce the cavitation number by ventilation is beneficial to maintaining the stability of the vehicle.
Key words:    supercavitating vehicle    free motion    ventilation    trajectory characteristics   
收稿日期: 2018-06-28     修回日期:
DOI: 10.1051/jnwpu/20193740691
通讯作者:     Email:
作者简介: 陈诚(1990-),西北工业大学博士研究生,主要从事超空泡航行体流体动力与弹道研究。
相关功能
PDF(1546KB) Free
打印本文
把本文推荐给朋友
作者相关文章
陈诚  在本刊中的所有文章
袁绪龙  在本刊中的所有文章
任耀  在本刊中的所有文章
党建军  在本刊中的所有文章
刘喜燕  在本刊中的所有文章

参考文献:
[1] 柯贵喜, 潘光, 黄桥高,等. 水下减阻技术研究综述[J]. 力学进展, 2009, 39(5):546-554 KE Guixi, PAN Guang, HUANG Qiaogao, et al. Reviews of Underwater Drag Reduction Technology[J]. Advances in Mechanics, 2009, 39(5):546-554(in Chinese)
[2] SARANJAM B. Experimental and Numerical Investigation of an Unsteady Supercavitating Moving Body[J]. Ocean Engineering, 2013, 59(2):9-14
[3] 魏英杰, 何乾坤, 王聪,等. 超空泡射弹尾拍问题研究进展[J]. 舰船科学技术, 2013, 35(1):7-15 WEI Yingjie, HE Qiankun, WANG Cong, et al. Review of Study on the Tail-Slap Problems of Supercavitating Projectile[J]. Ship Science and Technology, 2013, 35(1):7-15(in Chinese)
[4] 赵成功. 高速射弹非定常运动多相流场与弹道特性研究[D]. 哈尔滨:哈尔滨工业大学, 2017 ZHAO Chenggong. Research on Multiphase Flowand Trajectory Characteristics of Unsteady Movement of High Speed Projectile[D]. Harbin, Harbin Institute of Technology, 2017(in Chinese)
[5] YU K P, ZHANG G, ZHOU J J, et al. Numerical Study of the Pitching Motions of Supercavitating Vehicles[J]. Journal of Hydrodynamics, 2012, 24(6):951-958
[6] REICHARDT H. The Laws of Cavitation Bubbles at Axially Symmetrical Bodies in a Flow[R]. Reportsd and Translations No.766, 1946:322-326
[7] SAVCHENKO Y N. Expermental Investigation of Supercavitating Motion of Bodies[C]//RTO AVT Lecture Series on Supercavitating Flows, Brussels, 2001
[8] 金大桥, 王聪, 魏英杰,等. 通气超空泡水下射弹实验研究[J]. 工程力学, 2011, 28(9):214-217 JIN Daqiao, WANG Cong, WEI Yingjie, et al. Experimental Study of Ventilated Supercavity by Underwater Projectile[J]. Engineering Mechanics, 2011, 28(9):214-217(in Chinese)
[9] 王海斌, 张嘉钟, 魏英杰,等. 水下航行体通气超空泡减阻特性实验研究[J]. 船舶工程, 2006, 28(3):14-17 WANG Haibin, ZHANG Jiazhong, WEI Yingjie, et al. Experimental Study of the Drag Reduction of Ventilated Supercavity of Underwater Bodies[J]. Ship Engineering, 2006, 28(3):14-17(in Chinese)
[10] 曹伟,魏英杰,韩万金,等. 自然超空泡航行体弹道稳定性分析[J]. 哈尔滨工业大学学报, 2012, 44(1):26-30 CAO Wei, WEI Yingjie, HAN Wanjin, et al. Simulation of the Trajectory Stability of Natural Supercavitating Vehicles[J]. Journal of Harbin Institute of Technology, 2012, 44(1):26-30(in Chinese)
[11] LEE S J, PAIK B G, KIM K Y, et al. On Axial Deformation of Ventilated Supercavities in Closed-Wall Tunnel Experiments[J]. Experimental Thermal & Fluid Science, 2018, 96:321-328
[12] 时素果, 王亚东, 刘乐华,等. 预置舵角下超空泡航行体运动过程弹道特性研究[J]. 兵工学报, 2017, 38(10):1974-1979 SHI Suguo, WANG Yadong, LIU Lehua, et al. Research on the Trajectory Characteristics of Supercavitating Vehicle at Preset Rudder Angle[J]. Acta Armmamentarii, 2017, 38(10):1974-1979(in Chinese)
[13] YUAN X L, XING T. Hydrodynamic Characteristics of a Supercavitating Vehicle's AFT Body[J]. Ocean Engineering, 2016, 114:37-46
[14] Buyvol V N. Slender Cavity in Flows with Perturbations[M]. Kiev, Nuakova Dumka Publishing House, 1980