论文:2019,Vol:37,Issue(3):552-557
引用本文:
董浩, 都琳, 张凯, 崔迪, 邓子辰. 变厚度胞体壁多孔夹层材料的主动散热性能研究[J]. 西北工业大学学报
DONG Hao, DU Lin, ZHANG Kai, CUI Di, DENG Zichen. Study on Active Heat Dissipation Performance of Cellular Sandwich Materials with Variable Thickness of Cell Wall[J]. Northwestern polytechnical university

变厚度胞体壁多孔夹层材料的主动散热性能研究
董浩1,4, 都琳1,4, 张凯1,4, 崔迪3, 邓子辰1,2,4
1. 西北工业大学 理学院, 陕西 西安 710072;
2. 西北工业大学 力学与土木建筑学院, 陕西 西安 710072;
3. 中国人民解放军61267部队, 北京 101114;
4. 复杂系统动力学与控制工信部重点实验室, 陕西 西安 710072
摘要:
通过推导变厚度胞体壁多孔夹层材料的散热系数,研究了胞体壁的厚度变化对多孔夹层材料主动散热性能的影响。分析了胞体壁厚度变化下,不同胞体构型多孔夹层材料的相对密度与散热系数的关系,并得到了不同胞体构型多孔夹层材料的最大散热系数和最佳相对密度。通过线性拟合,给出了最大散热系数和最佳相对密度与变厚度参数的关系,探讨了胞体壁厚度变化对不同胞体构型多孔夹层材料的最佳相对密度和最大散热系数的影响,并得到如下结论:胞体壁厚度变化对六边形单元的主动散热能力影响小,而对三角形和正方形单元的影响大。
关键词:    多孔夹层材料    主动散热    变厚度    最大散热系数    线性拟合   
Study on Active Heat Dissipation Performance of Cellular Sandwich Materials with Variable Thickness of Cell Wall
DONG Hao1,4, DU Lin1,4, ZHANG Kai1,4, CUI Di3, DENG Zichen1,2,4
1. School of Science, Northwestern Polythechnical University, Xi'an 710072, China;
2. School of Mechanics, Civil Engineering and Architecture, Northwestern Polythechnical University, Xi'an 710072, China;
3. The Chinese People's Liberation Army, 61267 Troops, Beijing 101114, China;
4. MⅡT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an 710072, China
Abstract:
The influence of the thickness variation of the cell wall on the active heat dissipation of the cellular sandwich was studied by deducing the thermal performance index of the cellular sandwich with variable thickness. The relationship between the relative density and the thermal performance index of the cellular sandwich with different cell structures was analyzed. Then, the maximum thermal performance index and the optimum relative density of the cellular sandwich with different cell structures were obtained. The relationship between the maximum thermal performance index and the optimal relative density and the variable thickness parameter was given by using linear fitting. The influence of the thickness of cell wall thickness on the optimal relative density and maximum thermal performance index of different cell structures was analyzed. It was concluded that the change in cell wall thickness has the slight effect on the hexagon, and the effect on the triangle and square is big.
Key words:    cellular sandwich    active heat dissipation    variable thickness    maximum thermal performance index    linear fitting   
收稿日期: 2018-05-26     修回日期:
DOI: 10.1051/jnwpu/20193730552
基金项目: 国家重点研发计划(2017YFB1102801)资助
通讯作者:     Email:
作者简介: 董浩(1995-),西北工业大学博士研究生,主要从事计算力学及共融机器人研究。
相关功能
PDF(1365KB) Free
打印本文
把本文推荐给朋友
作者相关文章
董浩  在本刊中的所有文章
都琳  在本刊中的所有文章
张凯  在本刊中的所有文章
崔迪  在本刊中的所有文章
邓子辰  在本刊中的所有文章

参考文献:
[1] GIBSON L J, ASHBY M F. Cellular Solids:Structure and Properties[M]. New York, Cambridge University Press, 2014
[2] SCHAEDLER T A, CARTER W B. Architected Cellular Materials[J]. Annual Review of Materials Research, 2016, 46(1):070115
[3] 程修妍, 荣吉利, 谌相宇,等. 多孔材料在整流罩内中高频降噪的应用与优化研究[J]. 宇航学报, 2018, 39(4):383-391 CHEN Xiuyan, RONG Jili, CHEN Xiangyu, et al. Analysis and Optimization for Medium and High Frequency Noise Attenuation of Rocket Fairings with Porous Material[J]. Journal of Astronautics, 2018, 39(4):383-391(in Chinese)
[4] 姚丹, 杜几平, 张捷,等. 多孔材料声学参数辨识及其在城轨列车顶板隔声中的应用[J]. 中南大学学报, 2018, 49(1):253-260 YAO Dan, DU Jiping, ZHANG Jie, et al. Parameter Identification of Acoustic Porous Materials and Its Application in Sound Insulation of Metro Ceilings[J]. Journal of Central South University, 2018, 49(1):253-260(in Chinese)
[5] MARCELO J S, DE LEMOS, MARCELO B. Heat-Transfer Coefficient for Cellular Materials Modeled as an Array of Elliptic Rods[J]. Advanced Engineering Materials, 2010, 11(10):837-842
[6] ZHANG Y, XU Y, LIU S. A Fast Numerical Method for the Analysis of the Heat Transfer Performance of Graded Metallic Honeycomb Materials[J]. International Journal of Heat & Mass Transfer, 2014, 79(79):507-517
[7] FERKL P, POKORNY R, BOBÁK M, et al. Heat Transfer in One-Dimensional Micro-and Nano-Cellular Foams[J]. Chemical Engineering Science, 2013, 97(7):50-58
[8] MUKHERJEE R, GOPINATH N K, VIGNESH V, et al. Thermal Analysis of Scramjet Combustor Panel with Active Cooling Using Cellular Materials[C]//30th International Symposium on Shock Wavesl, 2017
[9] EUSEBIO S. Influence of Solid Phase Conductivity and Cellular Structure on the Heat Transfer Mechanisms of Cellular Materials:Diverse Case Studies[J]. Advanced Engineering Materials, 2010, 11(10):818-824
[10] 杨微. 基于FE-FDM方法的金属蜂窝换热器三维梯度设计[D]. 大连:大连理工大学, 2016 YANG Wei. Three-Dimensional Gradient Design of Metal Honeycomb Heat Exchanger Based on FE-FDM Method[D]. Dalian, Dalian University of Technology, 2016(in Chinese)
[11] 张凯, 邓子辰. 对流换热边界条件的多孔材料主动散热性能[J]. 复合材料学报, 2010, 27(4):152-159 ZHANG Kai, DENG Zichen. Active Heat Dissipation of Cellular Materials with Convection Boundary Conditions[J]. Acta Materiae Compositae Sinica, 2010, 27(4):152-159(in Chinese)
[12] 雷鸿, 张新铭, 王济平. 多孔泡沫材料强化传热特性及场协同分析[J]. 材料导报, 2018, 32(6):1010-1014 LEI Hong, ZHANG Xinming, WANG Jiping. Heat Transfer Enhancement of Porous Foams and Analysis with Field Synergy Principle[J]. Materials Review, 2018, 32(6):1010-1014(in Chinese)
[13] 王浩. 气动加热条件下金属蜂窝结构传热特性研究[D]. 哈尔滨:哈尔滨工业大学, 2014 WANG Hao. Study on Heat Transfer Characteristics Honeycomb Structure under Aerodynamic Heating Conditions[D]. Harbin, Harbin Univesity of Technology, 2014(in Chinese)
[14] 吴一昊, 王天舒. 考虑辐射效应金属蜂窝夹芯板传热性能的数值模拟分析[J]. 材料导报:纳米与新材料专辑, 2016(1):164-167 WU Yihao, WANG Tianshu. The Simulation of Heat Transfer Performance of Metal Honeycomb Sandwich Panel Taking into Account Radiative Effects[J]. Materials Review:Album on Nanometer and New Materials, 2016(1):164-167(in Chinese)