论文:2019,Vol:37,Issue(3):532-540
引用本文:
李爱军, 王瑜, 郭永, 王长青. 空天飞行器姿态直接力/气动力复合控制[J]. 西北工业大学学报
LI Aijun, WANG Yu, GUO Yong, WANG Changqing. Attitude Blended Control for Aerospace Vehicle with Lateral Thrusters and Aerodynamic Fins[J]. Northwestern polytechnical university

空天飞行器姿态直接力/气动力复合控制
李爱军, 王瑜, 郭永, 王长青
西北工业大学 自动化学院, 陕西 西安 710129
摘要:
针对空天飞行器再入段姿态控制问题,根据神经网络、滑模控制理论和控制分配技术,提出了一种有限时间复合控制策略。首先,根据空天飞行器再入段姿态模型设计了一种有限时间收敛的神经网络滑模控制器,得到使姿态角误差有限时间收敛的虚拟控制力矩。其次,采用控制分配技术将期望控制力矩映射到气动舵面和反推力系统。最后,通过对直接力/气动力复合控制的空天飞行器的仿真研究,验证了所提出复合控制策略的有效性。
关键词:    神经网络    有限时间控制    控制分配    反推力系统    复合控制   
Attitude Blended Control for Aerospace Vehicle with Lateral Thrusters and Aerodynamic Fins
LI Aijun, WANG Yu, GUO Yong, WANG Changqing
School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
A finite-time blended control strategy is proposed for the reentry phase attitude control of the aerospace vehicle (ASV) based on the neural network, sliding mode control theory and control allocation. Firstly, a finite-time neural networks sliding mode controller is designed based on the attitude model of the ASV in the reentry phase to obtain the virtual control moments which can make the attitude error converge to the equilibrium point in finite time. Secondly, the desired control moments are mapped into the control commands on the aerodynamic deflectors and the reaction control system (RCS) by using the control allocation. Finally, simulation results are provided to demonstrate the effectiveness of the attitude blended control strategy proposed.
Key words:    neural network    finite-time control    control allocation    reaction control system    blended control    aerospace vehicle    sliding mode control    simulation   
收稿日期: 2018-05-22     修回日期:
DOI: 10.1051/jnwpu/20193730532
基金项目: 航空科学基金(20160153003,2016ZC53019)与中央高校基本科研业务费专项基金(3102017OQD026)资助
通讯作者:     Email:
作者简介: 李爱军(1972-),西北工业大学教授,主要从事飞行器控制与仿真、先进控制理论及应用研究。
相关功能
PDF(1459KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李爱军  在本刊中的所有文章
王瑜  在本刊中的所有文章
郭永  在本刊中的所有文章
王长青  在本刊中的所有文章

参考文献:
[1] SHERTZER R H, ZIMPFER D J, BROWN P D. Control Allocation for the Next Generation of Entry Vehicles[C]//Proc of the AIAA Guidance, Navigation, and Control Conference, 2002:5-8
[2] MIN B M, KIM E T, TAHK M J. Application of Control Allocation Methods to SAT-ⅡUAV[C]//AIAA Guidance, Navigation, and Control Conference, 2005:5651-5660
[3] 于靖,陈谋,姜长生. 基于干扰观测器的非线性不确定系统自适应滑模控制[J]. 控制理论与应用,2014,31(8):993-999 YU Jing, CHEN Mo, JIANG Changsheng. Adaptive Sliding Mode Control for Nonlinear Uncertain Systems Based on Disturbance Observer[J]. Control Theory & Applications, 2014, 31(8):993-999(in Chinese)
[4] 张强,吴庆宪,姜长生,等. 考虑执行器动态和输入受限的近空间飞行器鲁棒可重构跟踪控制[J]. 控制理论与应用, 2012, 29(10):1263-1271 ZHANG Qiang, WU Qingxian, JIANG Changsheng, et al. Robust Reconfigurable Tracking Control of Near Space Vehicle with Actuator Dynamic and Input Constraints[J]. Control Theory & Applications,2012, 29(10):1263-1271(in Chinese)
[5] 王芳, 宗群, 田鯢苓, 等. 基于鲁棒自适应反步的可重复使用飞行器再入姿态控制[J]. 控制与决策, 2014, 29(1):12-18 WANG Fang, ZONG Qun, TIAN Niling, et al. Robust Adaptive Back-Stepping Flight Control Design for Reentry RLV[J]. Control and Decision, 2014, 29(1):12-18(in Chinese)
[6] 周丽, 姜长生, 钱承山. 一种基于神经网络的快速回馈递推自适应控制[J]. 宇航学报, 2008, 29(6):1888-1894 ZHOU Li, JIANG Changsheng, QIAN Chengshan. A Fast Adaptive Back-Stepping Method Based on Neural Networks[J]. Journal of Astronautics, 2008, 29(6):1888-1894(in Chinese)
[7] 陈谋, 邹庆元, 姜长生. 基于神经网络干扰观测器的动态逆飞行控制[J]. 控制与决策, 2008, 23(3):283-287 CHEN Mo, ZOU Qingyuan, JIANG Changsheng. Dynamical Inversion Flight Control Based on Neural Network Disturbance Observer[J]. Control and Decision, 2008, 23(3):283-287(in Chinese)
[8] LEE T, KIM Y. Nonlinear Adaptive Flight Control Using Back-Stepping and Neural Networks Controller[J]. Journal of Guidance, Control, and Dynamics, 2012, 24(4):675-682
[9] 丁世宏, 李世华. 有限时间控制问题综述[J]. 控制与决策, 2011, 26(2):161-169 DING Shihong, LI Shihua. A Survey for Finite-Time Control Problems[J]. Control and Decision, 2011, 26(2):161-169(in Chinese)
[10] LIU C, DONG C Y, JIANG W L. Finite-Time Adaptive Terminal Sliding Mode Controller Design for Reusable Launch Vehicle in Reentry Phase[C]//Guidance, Navigation & Control Conference, 2016
[11] DONG Q, ZONG Q. Integrated Finite-Time Disturbance Observer and Controller Design for Reusable Launch Vehicle in Reentry Phase[C]//Journal of Aerospace Engineering, 2016, 30(1):04016076
[12] 周宇, 黄一敏, 孙春贞. 基于脉宽调制的反作用控制系统技术[J]. 太赫兹科学与电子信息学报, 2012, 10(4):446-450 ZHOU Yu, HUANG Yimin, SUN Chunzhen. Control Technology Based on Pulse Width Modulation of RCS[J]. Journal of Terahertz Science and Electronic Information Technology, 2012, 10(4):446-450(in Chinese)
[13] BOLENDER M A, DOMAN D B. Nonlinear Control Allocation Using Piecewise Linear Functions[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6):1017-1027
[14] HU W J, ZHOU J. Design of Neural Network Variable Structure Reentry Control System for Reusable Launch Vehicle[J]. Journal of China Ordnance, 2008, 4(3):191-197
[15] 钱承山, 吴庆宪, 姜长生, 等. 基于反作用发动机推力的空天飞行器再入姿态飞行控制[J]. 航空动力学报, 2008,23(8):1546-1552 QIAN Chengshan, WU Qingxian, JIANG Changsheng, et al. Flight Control for an Aerospace Vehicle's Reentry Attitude Based on Thrust of Reaction Jets[J]. Journal of Aerospace Power, 2008, 23(8):1546-1552. (in Chinese)
[16] 贺成龙, 陈欣, 杨一栋. 一种动态逆解算的RLV混合规划控制分配研究[J]. 系统工程与电子技术, 2010, 32(9):1973-1976 HE Chenglong, CHEN Xin, YANG Yidong. Mixed Programming Control Allocation for Reusable Launch Vehicles Using Dynamic Inverse Calculating[J]. Systems Engineering and Electronics, 2010, 32(9):1973-1976(in Chinese)
[17] DONG Q, ZONG Q, TIAN B, et al. Integrated Finite-Time Disturbance Observer and Controller Design for Reusable Launch Vehicle in Reentry Phase[J]. Journal of Aerospace Engineering, 2016, 30(1):04016076
[18] GENG J, SHENG Y Z, LIU X D. Finite-Time Sliding Mode Attitude Control for a Reentry Vehicle with Blended Aerodynamic Surfaces and a Reaction Control System[J]. Chinese Journal of Aeronautics, 2014, 27(4):964-976
[19] HU Q, JIANG B, FRISWELL M I. Robust Saturated Finite Time Output Feedback Attitude Stabilization for Rigid Spacecraft[J]. Journal of Guidance, Control, and Dynamics, 2014, 37(6):1914-1929
[20] PARK J H, SANDBERG I W. Universal Approximation Using Radial-Basis-Function Networks[J]. Neural Computation, 2008, 3(2):246-257
[21] DOMAN D B, GAMBLE B J, NGO A D. Control Allocation of Reaction Control Jets and Aerodynamic Surfaces for Entry Vehicles[R]. AIAA-2007-6778