论文:2019,Vol:37,Issue(3):496-502
引用本文:
王增磊, 晏玉祥, 韩德川, 白晓亮, 张树生. 基于机器视觉的增强现实盲区装配方法[J]. 西北工业大学学报
WANG Zenglei, YAN Yuxiang, HAN Dechuan, BAI Xiaoliang, ZHANG Shusheng. Product Blind Area Assembly Method Based on Augmented Reality and Machine Vision[J]. Northwestern polytechnical university

基于机器视觉的增强现实盲区装配方法
王增磊1, 晏玉祥1, 韩德川1, 白晓亮1,2, 张树生1
1. 西北工业大学 机电学院, 陕西 西安 710072;
2. 东莞市三航军民融合创新研究院, 广东 东莞 523808
摘要:
对于盲区手工装配,由于工人视线受阻,无法看到待装配零件的实时状态,对装配的效率和准确率造成了极大影响。针对这一问题,提出了一种基于机器视觉的增强现实盲区装配方法。首先将椭圆作为标志点,通过对椭圆的检测和定位间接追踪盲区待装配对象;然后通过投影的方式进行AR可视化并利用局部误差放大的原理精确引导装配;最后设计基于机器视觉的增强现实盲区装配实验,验证该方法的有效性。实验结果表明,此方法能显著提高盲区装配作业的效率,并能有效降低装配错误率。
关键词:    盲区装配    增强现实    机器视觉   
Product Blind Area Assembly Method Based on Augmented Reality and Machine Vision
WANG Zenglei1, YAN Yuxiang1, HAN Dechuan1, BAI Xiaoliang1,2, ZHANG Shusheng1
1. School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China;
2. Dongguan Sanhang Civil-Military Integration Innovation Institute, Dongguan 523808, China
Abstract:
In the manual assembly of the blind area, the worker's line of sight is blocked, and the real-time state of the parts to be assembled cannot be seen, which has a great impact on the efficiency and accuracy of the assembly. Aiming at this problem, a blind zone assembly method based on machine vision and augmented reality(AR) is proposed. Firstly, the ellipse is used as the marker point. The object to be assembled in the blind area is indirectly tracked by the detection and positioning of the ellipse, and the AR visualization guide assembly is then performed by projection and the assembly is precisely guided using the principle of local error amplification. Finally, the blind zone assembly experiment based on machine vision and augmented reality is designed to verify the effectiveness of the method. The experimental results show that this method can significantly improve the efficiency of assembly work in blind areas and can effectively reduce the assembly error rate.
Key words:    blind area assembly    augmented reality    machine vision   
收稿日期: 2018-03-08     修回日期:
DOI: 10.1051/jnwpu/20193730496
基金项目: 东莞市科技装备动员项目(KZ2018-05)资助
通讯作者: 白晓亮(1975-),西北工业大学副教授,主要从事增强现实、智能装备、人机交互等研究。E-mail:bxl@nwpu.edu.cn     Email:bxl@nwpu.edu.cn
作者简介: 王增磊(1983-),西北工业大学博士研究生,主要从事增强现实装配研究。
相关功能
PDF(1774KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王增磊  在本刊中的所有文章
晏玉祥  在本刊中的所有文章
韩德川  在本刊中的所有文章
白晓亮  在本刊中的所有文章
张树生  在本刊中的所有文章

参考文献:
[1] RADKOWSKI R. Augmented Reality-Based Manual Assembly Support with Visual Features for Different Degrees of Difficulty[J]. International Journal of Human-Computer Interaction, 2015, 31(5):337-349
[2] BOOTHROYD G. Product Design for Manufacture and Assembly[J]. Computer-Aided Design, Elsevier, 1994, 26(7):505-520
[3] 刘检华. 军工数字化装配技术[J]. 国防制造技术,2011(4):5-7 LIU Jianhua. Digital Assembly Technology in Military Industry[J]. Defense Manufacturing Technology, 2011(4):5-7(in Chinese)
[4] BOOTHROYD G. Product Design for Manufacture and Assembly[J]. Computer Aided Design, 1994, 26(7):505-520
[5] JOVANOVIC V. Ergonomic Design of Manual Assembly Workplaces[C]//Annual ASEE IL/IN Section Conference, 2007
[6] 王月,张树生,白晓亮. 点云和视觉特征融合的增强现实装配系统三维跟踪注册方法[J]. 西北工业大学学报, 2019, 37(1):143-151 WANG Yue, ZHANG Shusheng, BAI Xiaoliang. A 3D Tracking and Registration Method Based on Point Cloud and Visual Features for Augmented Reality Aided Assembly System[J]. Journal of Northwestern Polytechnical University, 2019, 37(1):143-151(in Chinese)
[7] KATO H, BILLINGHURST M. Marker Tracking and HMD Calibration for a Video Based Augmented Reality Conferencing System[C]//Procedings of the 2nd IEEE and ACM International Workshop on Augmented Reality, 1999
[8] MORENO-NOGUER F, LEPETIT V, FUA P. Accurate Non-Iterative O(n) Solution to the PnP Problem[C]//IEEE International Conference on Computer Vision, 2007:1-8
[9] LEPETIT V, MORENO-NOGUER F, FUA P. EPnP:an Accurate O(n) Solution to the PnP Problem[J]. International Journal of Computer Vision, 2009, 81(2):155-166
[10] FIALA M. ARTAG, a Fiducial Marker System Using Digital Techniques[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005:590-596
[11] WANG X, ONG S K, NEE A Y C. A Comprehensive Survey of Augmented Reality Assembly Research[J]. Advances in Manufacturing, 2016, 4(1):1-22
[12] ZHOU F, DUH H-L B M. Trends in Augmented Reality Tracking, Interaction and Display:a Review of ten Years in ISMAR[C]//Proceedings from ISMAR 7th IEEE/ACM International Symposium:Mixed and Augmented Reality, 2008:193-202
[13] BIMBER O. Enabling View-Dependent Stereoscopic Projection in Real Environments[C]//Proceedings of the Fourth IEEE and ACM International Symposium on Mixed and Augmented Reality, 2005:14-23
[14] HENDERSON S, FEINER S. Exploring the Benefits of Augmented Reality Documentation for Maintenance and Repair[J]. IEEE Trans on Visualization and Computer Graphics, 2011, 17(10):1355-1368
[15] 王增磊,张树生,白晓亮. 基于增强现实的产品盲区装配技术研究[J]. 制造业自动化,2019,41(1):29-35 WANG Zenglei, ZHANG Shusheng, BAI Xiaoliang. Augmented Reality Based Product Blind Area Assembly Assistance[J]. Manufacturing Automation, 2019,41(1):29-35(in Chinese)
[16] OHTSU N. A Threshold Selection Method from Gray-Level Histograms[J]. IEEE Trans on Man Cybernetics, 1979, 9(1):62-66
[17] 闫蓓, 王斌, 李媛. 基于最小二乘法的椭圆拟合改进算法[J]. 北京航空航天大学学报, 2008, 34(3):295-298 YAN Bei, WANG Bin, LI Yuan. Optimal Ellipse Fitting Method Based on Least-Square Principle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2008, 34(3):295-298