论文:2019,Vol:37,Issue(3):449-456
引用本文:
王帅, 何国强, 秦飞. 超声速边界层氢气喷注减阻研究[J]. 西北工业大学学报
WANG Shuai, HE Guoqiang, QIN Fei. Research on Skin-Friction Drag Reduction by Hydrogen Injection in Supersonic Boundary Layer[J]. Northwestern polytechnical university

超声速边界层氢气喷注减阻研究
王帅, 何国强, 秦飞
西北工业大学 燃烧、热结构与内流场重点实验室, 陕西 西安 710072
摘要:
针对带有后向台阶的等截面受限空间,通过三维数值模拟,开展了超声速内流道边界层氢气喷注减阻的研究,分析对比了2.3Ma,2.8Ma来流条件下等质量氢气喷注、2.8Ma来流条件下氢气以当量比0.03,0.06,0.1喷注后近壁区流动特征以及壁面摩擦阻力的发展。研究表明边界层氢气喷注在2.3Ma和2.8Ma来流条件下可以达到13.5%左右的减阻效果。2.8Ma来流条件下,当量比为0.06时减阻效果最优,降幅为13.5%。气体的扩散与掺混沿流向逐渐加强,激波与边界层相互作用处掺混会被先加强后抑制,壁面剪应力在该位置伴随密度先降低后反弹呈现相同的变化规律。摩阻降幅沿流向也逐渐减弱,最佳的减阻区域内可达到将近60%的减阻收益。
关键词:    超声速流道    近壁区流动    氢气喷注    摩擦阻力    减阻   
Research on Skin-Friction Drag Reduction by Hydrogen Injection in Supersonic Boundary Layer
WANG Shuai, HE Guoqiang, QIN Fei
Science and Technology on Combustion, Internal Flow and Thermo-Structure Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to investigate the applicability of the skin-friction reduction technique using hydrogen injecting into turbulent boundary layer, three-dimensional numerical simulation was carried out for a constant-cross-confined-space with rearward facing steps. The flow characteristics near wall surface and development of wall shear stress were analyzed and compared under different coming flow and injection conditions. The simulation results show that the hydrogen injection can achieve around 13.5% skin-friction drag reduction under the coming flow Mach number of 2.3Ma or 2.8Ma. At 2.8Ma, the optimal reduction profit is 13.5% which is obtained when the equivalent ratio is 0.06. The gases mixings are gradually enhanced along the flow path. At the positions of shock wave-boundary-layer interactions, the mixings are first strengthened and then suppressed, and meanwhile, the wall shear stress and density changes with similar law that first decreases and then rebounds at the positions. The declines of skin-friction drag decrease along the flow direction, the best reduction area can profit nearly 60%.
Key words:    supersonic punching channel    near wall flow    hydrogen injection    skin-friction drag    skin-friction reduction    three-dimensional numerical simulation    turbulent boundary layer   
收稿日期: 2018-05-23     修回日期:
DOI: 10.1051/jnwpu/20193730449
基金项目: 国家自然科学基金(91541110)资助
通讯作者:     Email:
作者简介: 王帅(1993-),西北工业大学博士研究生,主要从事航空宇航推进理论与工程研究。
相关功能
PDF(1782KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王帅  在本刊中的所有文章
何国强  在本刊中的所有文章
秦飞  在本刊中的所有文章

参考文献:
[1] 许春晓. 壁湍流相干结构和减阻控制机理[J]. 力学进展, 2015, 45:111-140 XU Chunxiao. Coherent Structures and Drag-Reduction Mechanism in Wall Tarbulance[J]. Advanves in Mechanics, 2015, 45:111-140(in Chinese)
[2] GAD-EL-HAK M. Flow Control:Passive, Active, and Reactive Flow Management[M]. UK, Cambridge University Press, 2000
[3] ANDERSON J D. Hypersonic and High-Temperature Gas Dynamics[M]. New York, McGraw-Hill Book Company, 2006
[4] MITANI T, TOMIOKA S, KANDA T, CHINZEI N, et al. Scramjet Performance Achieved in Engine Tests from M4 to M8 Flight Conditions[R]. AIAA-2003-7009
[5] KIRCHHARTZ R M, MEE D J, STALKER R J. Skin Friction Drag with Boundary Layer Combustion in a Circular Combustor[R]. AIAA-2008-2589
[6] BRITTANY R K, ANNE M S, RUSSELL V W, et al. A New Skin Friction Gauge[R]. AIAA-2016-4031
[7] TAIRA T, SADATAKE T, HIROYUKI Y. Accuracy of Direct Skin-Friction Measurements in High-Enthalpy Supersonic Flows[J]. AIAA Journal, 2011, 49(6):1267-1271
[8] JAMES E B, VINCENT W, MICHAEL K S. Hypersonic Turbulent Boundary-Layer Fuel Injection and Combustion:Skin-Friction Reduction Mechanisms[J]. AIAA Journal, 2013, 51(9):2147-2157
[9] GIORGIO-SERCHI F, WEYMOUTH G D. Drag Cancellation by Added-Mass Pumping[J]. Journal of Fluid Mech, 2016, 798:1-11
[10] KORNILOV V I, BOIKO A V. Advances and Challenges in Periodic Forcing of the Turbulent Boundary Layer on a Body of Revolution[J]. Progress in Aerospace Sciences, 2018, 98:57-73
[11] AMIRREZA R, RAYHANEH A. The Common Mechanism of Turbulent Skin-Friction Drag Reduction with Superhydrophobic Longitudinal Microgrooves and Riblets[J]. Journal of Fluid Mech, 2018, 838:68-104
[12] 杨弘炜,高歌. 一种新型边界层控制技术应用于湍流减阻的实验研究[J]. 航空学报, 1997, 18(4):455-457 YANG Hongwei, GAO Ge. Experimental Study for Turbulent Drag Reduction Using a Novel Boundary Control Technique[J]. Acta Aeronautica et Astronautica Sinica, 1997, 18(4):455-457(in Chinese)
[13] STALKER R J. Control of Hypersonic Turbulent Skin Friction by Boundary-Layer Combustion of Hydrogen[J]. Journal of Spacecraft and Rockets, 2005, 42(4):577-587
[14] CHAN W Y K, MEE D J, SMART M K, et al. Boundary Layer Combustion for Viscous Drag Reduction in Practical Scramjet Configurations[C]//27th International Congress of the Aeronautical Sciences, 2010
[15] CLARK R J, BADE SHRESTHA S O. Boundary Layer Combustion for Skin Friction Drag Reduction in Scramjet Combustors[R]. AIAA-2014-3667
[16] WANG S, HE G Q, YAN D K, et al. Analysis and Reduction of Skin-Friction in a Rocket-Based Combined-Cycle Engine Flow Path Operating from Mach 1.5 to 6.0[J]. Acta Astronautica, 2018, 151:357-367
[17] MENTER F R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications[J]. AIAA Journal, 1994, 32(8):1598-1605
[18] WILCOX D C. Turbulence Modeling for CFD[M]. DCW Industries, La Canada, CA, 1994
[19] WANG S, HE G Q, QIN F, et al. Numerical Investigation of Skin-Friction Reduction in a Supersonic Channel[R]. AIAA-2017-2324
[20] PUDSEY A S, WHEATLEY V, BOYCE R R. Supersonic Boundary-Layer Combustion via Multiporthole Injector Arrays[J]. AIAA Journal, 2015, 53(10):2089-2906
[21] UEDA S, TAKEGOSHI M, KOUCHI T, et al. Evaluation of Heat Flux on Scramjet Engine Wall in Mach 6 Flight Condition[C]//55th International Astronautical Congress, 2006