论文:2019,Vol:37,Issue(3):443-448
引用本文:
万小朋, 杨光猛, 赵美英. 纤维分布与界面强度对复合材料横向压缩性能影响分析[J]. 西北工业大学学报
WAN Xiaopeng, YANG Guangmeng, ZHAO Meiying. Influence of Fiber Distribution and Interfacial Strength on Transverse Compressive Strength of Unidirectional Composites[J]. Northwestern polytechnical university

纤维分布与界面强度对复合材料横向压缩性能影响分析
万小朋, 杨光猛, 赵美英
西北工业大学 航空学院, 陕西 西安 710072
摘要:
建立了纤维随机分布代表性体积单元微观力学模型,采用随机扩张算法生成纤维随机分布模型,微观有限元模型中采用内聚力单元和Drucker-Prager弹塑性准则分别对界面和基体的力学行为进行描述,分析研究了纤维分布形式与界面强度对复合材料横向压缩性能的影响。结果表明纤维随机分布是引起复合材料横向压缩强度不稳定的一个因素;基体剪切塑性损伤而不是界面损伤在复合材料横向压缩破坏过程中起主导作用,因而采用无界面单元模型可以简化建模、不需要考虑界面强度取值,并能很好地预测复合材料横向压缩强度与压缩损伤破坏形貌。
关键词:    微观力学模型    微观结构    界面强度    纤维随机分布    塑性变形   
Influence of Fiber Distribution and Interfacial Strength on Transverse Compressive Strength of Unidirectional Composites
WAN Xiaopeng, YANG Guangmeng, ZHAO Meiying
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The representative volume element(RVE) of the computational micromechanics is established with random fiber distribution being generated by random sequential expansion algorithm. The plasticity of matrix and interfacial decohesion are simulated by using Drucker-Prager model and cohesive zone model respectively. The effects of the random fiber distribution and interfacial strength on the transverse compressive strength of unidirectional composites are analyzed. The results show that the random fiber distribution is a factor to cause the instability of the transverse compressive strength. Meanwhile, the matrix plastic shear damage and non interfacial damage is dominated in compression failure. Therefore, the RVE model without interface element adopted can clearly predict the compressive strength and the damage process of unidirectional composites, which contributes to simplify the modeling without considering the value of interfacial parameters.
Key words:    computational micromechanics    microstructure    interfacial strength    random fiber distribution    plastic deformation   
收稿日期: 2018-06-20     修回日期:
DOI: 10.1051/jnwpu/20193730443
通讯作者:     Email:
作者简介: 万小朋(1962-),西北工业大学教授、博士生导师,主要从事飞行器设计、复合材料力学性能研究。
相关功能
PDF(1455KB) Free
打印本文
把本文推荐给朋友
作者相关文章
万小朋  在本刊中的所有文章
杨光猛  在本刊中的所有文章
赵美英  在本刊中的所有文章

参考文献:
[1] ULLAH Z, KACZMARCZYK L, PEARCE C J. Three-Dimensional Nonlinear Micro/Meso-Mechanical Response of the Fibre-Reinforced Polymer Composites[J]. Composite Structures, 2017, 161:204-214
[2] 杨仲. 考虑界面相的单向复合材料力学性能预报研究[D]. 哈尔滨:哈尔滨工业大学, 2010 YANG Zhong. Study on Prediction of Mechanical Performance for Unidirectional Composite Considering Interphase[D]. Harbin, Harbin Institute of Technology, 2010(in Chinese)
[3] VAJARI D A, GONZÁLEZ C, LLORCA J, et al. A Numerical Study of the Influence of Microvoids in the Transverse Mechanical Response of Unidirectional Composites[J]. Composites Science & Technology, 2014, 97(16):46-54
[4] NAYA F, GONZÁLEZ C, LOPES C S, et al. Computational Micromechanics of the Transverse and Shear Behavior of Unidirectional Fiber Polymers Including Environmental Effects[J]. Composites:Part A, 2017, 92:146-157
[5] 澎湃,赵美英,王文智. 细观力学模型预测复合材料横向强度性能研究[J]. 机械科学与技术, 2017, 36(10):1611-1618 PENG Pai, ZHAO Meiying, WANG Wenzhi. Transverse Strength Prediction of Composite Materials via Micromechanics Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(10):1611-1618(in Chinese)
[6] GONZÁLEZ C, LLORCA J. Mechanical Behavior of Unidirectional Fiber-reinforced Polymers under Transverse Compression:Microscopic Mechanisms and Modeling[J]. Composites Science & Technology, 2007, 67(13):2795-2806
[7] TOTRY E, GONZÁLEZ C, LLORCA J. Failure Locus of Fiber-Reinforced Composites under Transverse Compression and Out-of-Plane Shear[J]. Composites Science & Technology, 2008, 68(3):829-839
[8] TOTRY E, GONZÁLEZ C, LLORCA J. Prediction of the Failure Locus of C/Peek Composites under Transverse Compression and Longitudinal Shear through Computational Micromechanics[J]. Composites Science & Technology, 2008, 68(15):3128-3136
[9] CANAL L P, GONZÁLEZ C, SEGURADO J, et al. Intraply Fracture of Fiber-reinforced Composites:Microscopic Mechanisms and Modeling[J]. Composites Science & Technology, 2012, 72(11):1223-1232
[10] YANG L, YAN Y, LIU Y, et al. Microscopic Failure Mechanisms of Fiber-Reinforced Polymer Composites under Transverse Tension and Compression[J]. Composites Science & Technology, 2012, 72(15):1818-1825
[11] O'DWYER D J, O'DOWD N P, MCCARTHY C T, Numerical Micromechanical Investigation of Interfacial Strength Parameters in a Carbon Fibre Composite Material[J]. Journal of Composite Materials, 2014, 48(6):749-760
[12] PARAMBIL N K, GURURAJA S. Micro-Scale Progressive Damage Development in Polymer Composites under Longitudinal Loading[J]. Mechanics of Materials, 2017, 111:21-34
[13] MAREK R. A Study of Deformation and Failure of Unidirectional Fiber-Reinforced Polymers under Transverse Loading by Means of Computational Micromechanics[M]. Switzerland, Springer International Publishing, 2016
[14] LUBLINER J, OLIVER J, OLLER S, et al. A Plastic-Damage Model for Concrete[J]. International Journal of Solids & Structures, 1989, 25(3):299-326
[15] YANG L, YAN Y, RAN Z, et al. A New Method for Generating Random Fibre Distributions for Fibre Reinforced Composites[J]. Composites Science & Technology, 2013, 76(76):14-20
[16] SODEN P D, HINTON M J, KADDOUR A S. Lamina Properties, Lay-up Configurations and Loading Conditions for a Range of Fibre-Reinforced Composite Laminates[J]. Composites Science & Technology, 1998, 58(7):1011-1022