论文:2019,Vol:37,Issue(1):177-185
引用本文:
赵炜, 祝小平, 周洲, 许晓平. 时变风场中低雷诺数翼型气动特性研究[J]. 西北工业大学学报
ZHAO Wei, ZHU Xiaoping, ZHOU Zhou, XU Xiaoping. Exploring on Aerodynamic Characteristics of Low Reynolds Number Airfoil in Time-varying Wind Field[J]. Northwestern polytechnical university

时变风场中低雷诺数翼型气动特性研究
赵炜1,2, 祝小平2, 周洲1,2, 许晓平1,2
1. 西北工业大学 航空学院, 陕西 西安 710072;
2. 西北工业大学 无人机特种技术重点实验室, 陕西 西安 710065
摘要:
太阳能无人机普遍具有低雷诺数效应显著,对突风敏感的问题。以此为背景,采用网格速度法,对低雷诺数翼型FX63-137在低雷诺数下的阵风响应特性进行了研究。首先,通过与实验数据和参考文献对比,对低雷诺数下的数值模拟方法以及网格速度法进行了验证。接着对FX63-137翼型在不同雷诺数以及不同迎角下的阵风响应特性进行了数值模拟。研究结果表明:在小迎角情况下,随着雷诺数的减小,翼型表面分离泡变得饱满,翼型在阵风扰动下的升力系数增量减小,层流分离泡对阵风响应幅值具有卸载作用。在大迎角情况下,由于翼型进入失速区,升力系数增量在未达到阵风扰动最大值时就开始下降。并且在阵风扰动消失时,升力系数增量为负值。同时,在有效迎角相同的上行和下行时刻,翼型流场结构存在较大差异,翼型升力系数增量在上行时刻要大于下行时刻,形成一个不封闭的迟滞环。
关键词:    低雷诺数    阵风响应    非线性    网格速度法    迟滞环   
Exploring on Aerodynamic Characteristics of Low Reynolds Number Airfoil in Time-varying Wind Field
ZHAO Wei1,2, ZHU Xiaoping2, ZHOU Zhou1,2, XU Xiaoping1,2
1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
2. UAV Science and Technology Laboratory, Northewestern Ploytechnical University, Xi'an 710065, China
Abstract:
A solar-powered unmanned aerial vehicle generally encounters the problems that it has low Reynolds effects and is highly susceptible to gust response. Therefore, the grid velocity method was used to analyze the gust response characteristics of the airfoil FX63-137 under low Reynolds number. First, the reliability of the numerical simulation method at low Reynolds number and grid velocity method were verified with experimental data. Second, the gust response characteristics of FX63-137 airfoil under different Reynolds numbers and different angles of attack were numerically simulated. The results show that the magnitude of incremental lift coefficient in gust response decreases because laminar separation bubbles are complete as the Reynolds number decreases at a small angle of attack. They also show that laminar separation bubbles have an unloaded effect on gust response. At a high angle of attack, as the airfoil enters into stalling stage, the incremental lift coefficient begins to decline before reaching maximum gust disturbance. Because of the stalling of the airfoil, when the gust disappears, the incremental lift coefficient has a negative value. What's more, although the effective angle of attack is equal, the flow structure of the airfoil is somewhat different in upstream and downstream moments. Compared with the downstream moment, the incremental lift coefficient at the upstream moment is generally larger, and the incremental lift coefficient curve of the airfoil forms a non-closed hysteresis loop.
Key words:    low Reynolds number    gust response    non-linearity    grid velocity method    hysteresis loop   
收稿日期: 2018-03-02     修回日期:
DOI: 10.1051/jnwpu/20193710177
基金项目: 陕西省重点研发项目(2018ZDCXL-GY-03-04)资助
通讯作者:     Email:
作者简介: 赵炜(1993-),西北工业大学硕士研究生,主要从事飞行器设计及气动布局设计研究。
相关功能
PDF(3464KB) Free
打印本文
把本文推荐给朋友
作者相关文章
赵炜  在本刊中的所有文章
祝小平  在本刊中的所有文章
周洲  在本刊中的所有文章
许晓平  在本刊中的所有文章

参考文献:
[1] 昌敏, 周洲, 郑志成. 太阳能飞机原理及总体参数敏度分析[J]. 西北工业大学学报, 2010, 28(5):792-796 CHANG Min, ZHOU Zhou, ZHENG Zhicheng. Flight Principles of Solar-Powered Airplane and Sensitivity of Its Conceptual Parameters[J]. Journal of Northwestern Polytechnical University, 2010, 28(5):792-796 (in Chinese)
[2] 赵继伟, 胡赞远. 民用飞机阵风载荷及减缓技术的研究[J]. 民用飞机设计与研究, 2012,104(1):17-20 ZHAO Jiwei, HU Zanyuan. Research on Gust Load and Its Load Alleviation Technology of Civil Aircrafts[J]. Civil Aircraft Design & Research, 2012, 104(1):17-20 (in Chinese)
[3] DILLSAVER M J, CESNIK C M S, KOLMANOVSKY I C. Gust Response Sensitivity Characteristics of very Flexible Aircraft[C]//AIAA Atmospheric Flight Mechanics Conference. 2012
[4] PATIL J M, TAYLOR D J. Gust Response of Highly Flexible Aircraft[R]. AIAA-2006-1638
[5] RAVEH D E, ZAIDE A. Numerical Simulation and Reduced-Order Modeling of Airfoil Gust Response[J]. AIAA Journal, 2006, 44(8):1826-1834
[6] 詹浩, 钱炜祺. 弹性机翼阵风响应数值计算方法[J]. 计算力学学报, 2009, 26(4):270-275 ZHAN Hao, QIAN Weiqi. Numerical Simulation on Gust Response of Elastic Wing[J]. Journal of Computational Mechanics, 2009, 26(4):270-275 (in Chinese)
[7] 许晓平, 祝小平, 周洲,等. 基于CFD方法的阵风响应与阵风减缓研究[J]. 西北工业大学学报, 2010, 28(6):818-823 XU Xiaoping, ZHU Xiaoping, ZHOU Zhou, et al. Further Exploring CFD-Based Gust Response and Gust Alleviation[J]. Journal of Northwestern Polytechnical University, 2010, 28(6):818-823 (in Chinese)
[8] OLSON D A, KATZ A W, NAGUIB A M, et al. On the Challenges in Experimental Characterization of Flow Separation over Airfoils at Low Reynolds Number[J]. Experiments in Fluids, 2013, 54(2):1470
[9] 甘文彪, 周洲, 许晓平. 仿生全翼式太阳能无人机气动数值模拟[J]. 航空学报, 2015, 36(10):3284-3294 GAN Wenbiao, ZHOU Zhou, XU Xiaoping. Aerodynamic Numerical Simulation of Bionic Full-Wing Typical Solar-Powered Unmanned Aerial Vehicle[J]. Acta Aeronautica et Astronautica Sinica. 2015, 36(10):3284-3294(in Chinese)
[10] MENTER F R, LANGTRY R B, LIKKI S R, et al. A Correlation Based Transition Model Using Local Variables Part 1-Model Formulation[R]. ASME 2004-GT-53452
[11] LANGTRY R B, MENTER F R, LIKKI S R, et al. A Correlation Based Transition Model Using Local Variables Part 2-Test Cases and Industrial Applications[R]. ASME 2004-GT-53434
[12] PARAMESWARAN V, BAEDER J D. Indicial Aerodynamics in Compressible Flow-Direct Computational Fluid Dynamic Calculations[J]. Journal of Aircraft, 1997, 34(1):131-133
[13] MCGRANAHAN B D. Wind Tunnel Aerodynamic Tests of Six Airfoils for Use on Small Wind Turbines[R]. NREL/SR-500-34515, 2004
[14] HOBIT F M. Gust Load on Aircraft:Concepts and Application[M]. Washinyton D C, Ametican Institute of Aetonautics and Astronautics, Inc, 1988
相关文献:
1.王科雷, 周洲, 甘文彪, 许晓平.太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学学报, 2014,32(2): 163-168