论文:2018,Vol:36,Issue(5):978-987
引用本文:
李炳乾, 董文瀚, 马小山. 基于滑模观测器的无人推力矢量飞机反步容错控制[J]. 西北工业大学学报
Li Bingqian, Dong Wenhan, Ma Xiaoshan. Backstepping Fault-Tolerant Control for Unmanned Thrust-Vectoring Aircraft Based on Sliding-Mode Observer[J]. Northwestern polytechnical university

基于滑模观测器的无人推力矢量飞机反步容错控制
李炳乾1, 董文瀚2, 马小山1
1. 空军工程大学 研究生院, 陕西 西安 710038;
2. 空军工程大学 航空工程学院, 陕西 西安 710038
摘要:
针对无人推力矢量飞机,设计了基于滑模观测器的反步容错控制。首先提出执行器故障模型,并将本体方程分为快、慢回路,建立包含不确定性、舵面故障和执行器故障的无人推力矢量飞机故障模型,然后设计包含高阶滑模观测器及不连续投影自适应律的级联观测器实现补偿不确定性和舵面故障的状态估计,并通过滑模观测器实现故障辨识和故障参数估计,最后结合状态估计及故障参数实现包容不确定性,舵面故障和执行器故障的全局反步容错控制。大迎角机动仿真表明所提方法能够有效实现无人推力矢量飞机的全局容错控制。
关键词:    无人推力矢量飞机    执行器故障    舵面故障    级联观测器    滑模观测器    反步容错控制   
Backstepping Fault-Tolerant Control for Unmanned Thrust-Vectoring Aircraft Based on Sliding-Mode Observer
Li Bingqian1, Dong Wenhan2, Ma Xiaoshan1
1. Postgraduate College, Air Force Engineering University, Xi'an 710038, China;
2. Aeronautics Engineering College, Air Force Engineering University, Xi'an 710038, China
Abstract:
In this paper, a backstepping fault-tolerant control based on sliding-mode observer is proposed for the unmanned thrust-vectoring aircraft (UTVA) control. First, the UTVA model with the uncertainty, control surface damage and actuator faults is described, which is divided into fast loop and slow loop. Next, the cascade observers including a high-order SMO and the discontinuous projection adaptive law are proposed to estimate the states with compensating the uncertainty and control surface damage, and the sliding-mode observer is designed to identify actuator faults and estimate fault parameters. Then, the backstepping fault-tolerant control combining the estimation of states and fault parameters is proposed to achieve the global fault-tolerant control, which compensates the uncertainty, control surface damage and actuator faults. Finally, simulation results are given to demonstrate the effectiveness for UTVA.
Key words:    UTVA    actuator fault    control surface damage    cascade observer    sliding-mode observer    backstepping fault-tolerant control   
收稿日期: 2017-09-09     修回日期:
DOI:
基金项目: 航空科学基金(20141396012)资助
通讯作者:     Email:
作者简介: 李炳乾(1995-),空军工程大学硕士研究生,主要从事飞行控制与仿真、容错控制研究。
相关功能
PDF(3339KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李炳乾  在本刊中的所有文章
董文瀚  在本刊中的所有文章
马小山  在本刊中的所有文章

参考文献:
[1] 车竞, 何开锋, 钱炜祺. 制空型无人机的关键技术、气动布局及特性[J]. 空气动力学学报, 2017, 35(1):13-19 Che Jing, He Kaifeng, Qian Weiqi. Key Technique and Aerodynamic Configuration Characteristic of UCAV with Command of the air[J]. ACTA Aerodynamic Sinica, 2017, 35(1):13-19(in Chinese)
[2] 章鸿翔, 薛雅丽, 王佳辉. 推力矢量飞行器动态控制分配方法研究.电光与控制, 2016, 23(12):71-76 Zhang Hongxiang, Xue Yali, Wang Jiahui. Research on Dynamic Control Allocation Method for Aircraft with Thrust Vector[J]. Electronics Optics & Control, 2016, 23(12):71-76(in Chinese)
[3] 高民,艾剑良,李建波,应思斌. 导弹攻击下带矢量推力无人战斗机逃逸概率分析[J]. 计算机测量与控制, 2009, 17(10):2027-2029 Gao Min, Ai Jianliang, Li Jianbo, Ying Sibin. Evasive Probability Analysis of UCAV with Vector Thrust against a Proportional Missile[J]. Computer Measurement & Control, 2009, 17(10):2027-2029(in Chinese)
[4] 陈经纬, 陈康, 尚妮妮, 等. 基于气动力/推力矢量控制的飞行器性能分析[J]. 西北工业大学学报, 2014, 32(6):877-881 Chen Jingwei, Chen Kang, Shang Nini, et al. Performance Analysis of Hypersonic Vehicle Based on Aerodynamic/Thrust Vector Control[J]. Northwestern Polytechnical University, 2014, 32(6):877-881(in Chinese)
[5] Hu S, Zhu J H. Longitudinal High Incidence Unsteady Aerodynamic Modeling for Advanced Combat Aircraft Configuration from Wind Tunnel Data[J]. Sci China Inf Sci, 2017, 60(11):118201
[6] Zhang J, Swain A K, Nguang S K. Robust Sliding Mode Observer-Based Fault Estimation for Certain Class of Uncertain Nonlinear Systems[J]. Asian Journal of Control, 2015, 17(6):1296-1309
[7] Ooi J H T, Tan C P, Nurzaman S G, et al. A Sliding Mode Observer for Infinitely Unobservable Descriptor Systems[J]. IEEE Trans on Automatic Control, 2017, 62(7):3580-3587
[8] Jia Q X, Chen W, Zhang Y C, et al. Fault Reconstruction for Continuous-Time System via Learning Observers[J]. Asian Journal of Control, 2016, 18(2):549-561
[9] Ng K Y, Tan C P, Oetomo D. Disturbance Decoupled Fault Reconstruction Using Cascaded Sliding Mode Observers[J]. Automatica, 2012, 48(5):794-799
[10] Yin Shen, Yang Hongyan, Okyay Kaynak. Sliding Mode Observer-Based for Markovian Jump Systems with Actuator and Sensor Faults[J]. IEEE Trans on Automatic Control, 2017, 62(7):3551-3558
[11] Brahim A B, Dhahri S, Hmida F B, et al. Simultaneous Actuator and Sensor Faults Reconstruction Based on Robust Sliding Mode Observer for a Class of Nonlinear Systems[J]. Asian Journal of Control, 2017, 19(1):362-371
[12] 谭健, 周洲, 祝小平, 许晓平. 飞翼布局无人机二阶滑模姿态跟踪鲁棒控制[J]. 西北工业大学学报, 2015, 33(2):185-190 Tan Jian, Zhou Zhou, Zhu Xiaoping, Xu Xiaoping. Second Order Sliding Mode Attitude Tracking and Robust Control of Flying-Wing UAV[J]. Northwestern Polytechnical University, 2015, 33(2):185-190(in Chinese)
[13] Jiang B, Xu D, Shi P, et al. Adaptive Neural Observer-Based Backstepping Fault Tolerant Control for Near Space Vehicle under Control Effector Damage[J]. IET Control Theory Appl, 2014, 8(9):658-666
[14] Yin Shen, Gao Huijun, Qiu Jianbin, et al. Descriptor Reduced-Order Sliding Mode Observers Design for Switched Systems with Sensor and Actuator Faults[J]. Automatica, 2017, 76:282-292
[15] 丛玉华. 带推力矢量无人机的飞行控制[D]. 南京:南京航空航天大学, 2009 Cong Yuhua. The Flight Control for Unmanned Thrust-Vectoring Aircraft[D]. Nanjing, Nanjing University of Aeronautics and Astronautics, 2009(in Chinese)
[16] Farrell J, Polycarpou M, Sharma M, et al. Command Filtered Backstepping[J]. IEEE Trans Autom Control, 2009, 54(6):1391-1395
[17] Yang J Q, Zhu F L, Wang X, et al. Robust Sliding-Mode Observer-Based Sensor Fault Estimation, Actuator Fault Detection and Isolation for Uncertain Nonlinear Systems[J]. International Journal of Control, Automation and Systems, 2015, 13(5):1037-1046