论文:2018,Vol:36,Issue(3):590-596
引用本文:
徐方暖, 邓子辰, 王博, 魏乙, 李庆军. 太阳光压作用下空间太阳能电站的动力学响应[J]. 西北工业大学学报
Xu Fangnuan, Deng Zichen, Wang Bo, Wei Yi, Li Qingjun. Dynamic Response of Solar Power Satellite Considering Solar Radiation Pressure[J]. Northwestern polytechnical university

太阳光压作用下空间太阳能电站的动力学响应
徐方暖1, 邓子辰1, 王博2, 魏乙3, 李庆军1
1. 西北工业大学 工程力学系, 陕西 西安 710072;
2. 钱学森空间技术实验室, 北京 100094;
3. 西北工业大学 应用数学系, 陕西 西安 710072
摘要:
研究了太阳光压作用下绳系空间太阳能电站的姿态和结构振动动力学响应。将太阳能电池板简化为Euler-Bernoulli梁,平台看作质点,绳子看作无质量的弹簧,建立了绳系空间太阳能电站的简化模型。采用绝对节点坐标法将梁离散,通过Hamilton原理建立了系统的动力学方程。采用辛Runge-Kutta方法进行数值仿真,通过数值算例验证了新模型和数值方法的有效性。最后,数值仿真表明,结构振动和太阳光压均会使系统的姿态产生小幅度振荡,太阳光压对结构振动产生的影响可忽略不计。
关键词:    空间太阳能电站    太阳光压    绝对节点坐标法    辛算法    Hamilton系统    空间系绳    弹性变形   
Dynamic Response of Solar Power Satellite Considering Solar Radiation Pressure
Xu Fangnuan1, Deng Zichen1, Wang Bo2, Wei Yi3, Li Qingjun1
1. Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an 710072, China;
2. Qian Xuesen Laboratory of Space Technology, Beijing 100094, China;
3. Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The attitude and structural vibration of tethered solar power satellite were studied considering solar radiation pressure. Firstly, the simplified model of tethered solar power satellite was established. The solar panel was modeled as an Euler-Bernoulli Beam, the bus was modeled as a particle, and the tethers were modeled as massless springs. The equations of motion were derived based on absolute nodal coordinate formulation and Hamilton's principle. Then, Symplectic Runge-Kutta method was adopted to solve the differential equations. The proposed model and numerical algorithm were validated through a numerical example. Finally, numerical simulations were carried out. Simulation results showed that solar radiation pressure as well as structural vibration cause small fluctuation of the attitude angle. Moreover, the effect of solar radiation pressure on structural vibration can be neglected.
Key words:    solar power satellite    solar radiation pressure    absolute nodal coordinate formulation    symplectic algorithm    hamiltonian system    space tethers    elastic deformation   
收稿日期: 2017-04-01     修回日期:
DOI:
基金项目: 国家自然科学基金(11432010)资助
通讯作者:     Email:
作者简介: 徐方暖(1981-),西北工业大学讲师,主要从事飞行器动力学与控制及辛算法研究。
相关功能
PDF(1874KB) Free
打印本文
把本文推荐给朋友
作者相关文章
徐方暖  在本刊中的所有文章
邓子辰  在本刊中的所有文章
王博  在本刊中的所有文章
魏乙  在本刊中的所有文章
李庆军  在本刊中的所有文章

参考文献:
[1] 杨阳,张逸群,王东旭,等. SSPS太阳能收集系统研究现状及发展趋势[J]. 宇航学报,2016,37(1):21-28 Yang Yang, Zhang Yiqun, Wang Dongxu, et al. Status and Trend of the Solar Energy Collection System for Space Solar Power Station[J]. Journal of Astronautics,2016,37(1):21-28(in Chinese)
[2] Rouge J D. Space-Based Solar Power as an Opportunity for Strategic Security[R]. National Security Space Office, 2007:2-4
[3] Koomanoff F A. Satellite Power System Concept Development and Evaluation Program[J]. Space Sol Power Rev, 1981, 2:1-2
[4] Carrington C, Fikes J, Gerry M, et al. The Abacus/Reflector and Integrated Symmetrical Concentrator-Concepts for Space Solar Power Collection and Transmission[C]//35th Intersociety Energy Conversion Engineering Conference and Exhibit, 2000:3067
[5] Seboldt W, Klimke M, Leipold M et al. Hanowski, European Sail Tower SPS Concept[J]. Acta Astronautica, 2001, 48:785-792
[6] Sasaki S, Tanaka K, Higuchi K, et al. A New Concept of Solar Power Satellite:Tethered-SPS[J]. Acta Astronautica, 2007, 60:153-165
[7] Takeichi N, Ueno H, Oda M. Feasibility Study of a Solar Power Satellite System Configured by Formation Flying[J]. Acta Astronautica, 2005, 57:698-706
[8] 侯欣宾, 王立, 张兴华, 等. 多旋转关节空间太阳能电站概念方案设计[J]. 宇航学报, 2015, 36(11):1332-1338 Hou Xinbin, Wang Li, Zhang Xinhua, et al. Concept Design on Multi-Rotary Joints SPS[J]. Journal of Astronautics, 2015, 36(11):1332-1338(in Chinese)
[9] Fujii H A, Watanabe T, Kojima H, et al. Control of Attitude and Vibration of a Tethered Space Solar Power Satellite[C]//AIAA Guidance Navigation and Control Conference and Exhibit, 2003
[10] Zhou D, Fan J. Slewing Maneuver and Vibration Control of Tethered Space Solar Power Satellite[C]//Proceedings of the Second International Conference on Mechanic Automation and Control Engineering, 2011:5239-5242
[11] 周荻, 范继祥. 绳系太阳能发电卫星姿态机动的主动振动控制[J]. 宇航学报, 2012, 33(5):605-611 Zhou Di, Fan Jixiang. Active Vibration Control of Tethered Solar Power Satellite during Attitude Maneuvering[J]. Journal of Astronautics, 2012, 33(5):605-611(in Chinese)
[12] 周荻, 范继祥. 绳系太阳能发电卫星姿态机动的边界控制[J]. 振动工程学报, 2013, 26(1):41-47 Zhou Di, Fan Jixiang. Boundary Control in the Attitude Maneuvering of Tethered Space Solar Power Satellite[J]. Journal of Vibration Engineering, 2013, 26(1):41-47(in Chinese)
[13] Fan J, Fujii H A, Yano Y. Tether Technology for Active Vibration Control of Tethered Space Solar Power Satellite[C]//The IPSI BgD Trans on Advanced Research, 2013:27-31
[14] Fujii H A, Sugimoto Y, Watanabe T, et al. Tethered Actuator for Vibration Control of Space Structures[J]. Acta Astronautica, 2015, 117:55-63
[15] Senda K, Goto T. Dynamics Simulation of Flexible Solar Power Satellite Using Geomagnetic Control[C]//The 24th Workshop on JAXA Astrodynamics and Flight Mechanics, 2014:215
[16] Ishimura K, Higuchi K. Coupling between Structural Deformation and Attitude Motion of Large Planar Space Structures Suspended by Multi-Tethers[J]. Acta Astronautica, 2007, 60:691-710
[17] 魏乙, 邓子辰, 李庆军, 等. 绳系空间太阳能电站动力学响应分析[J]. 宇航学报, 2016, 37(9):1041-1048 Wei Yi, Deng Zichen, Li Qingjun, et al. Analysis of Dynamic Response of Tethered Space Solar Power Station[J]. Journal of Astronautics, 2016, 37(9):1041-1048(in Chinese)
[18] Shabana A A. Dynamics of Multibody Systems[M]. Cambridge University Press, 2013
[19] 应祖光, 高等动力学——理论及应用[M]. 杭州:浙江大学出版社, 2011:36-65 Ying Zuguang. Advanced Dynamics——Theory and Application[M]. Hangzhou, Zhejiang University Press, 2011:36-65(in Chinese)
[20] 冯康, 秦孟兆. 哈密尔顿系统的辛几何算法[M]. 杭州:浙江科技出版社, 2003 Feng Kang,Qin Mengzhao. Symplectic Geometric Algorithms for Hamiltonian Systems[M]. Hangzhou, Zhejiang Science and Technology Press, 2003(in Chinese)
[21] 邓子辰, 曹珊珊, 李庆军, 等. 基于辛Runge-Kutta方法的太阳帆塔动力学特性研究[J]. 中国科学:技术科学, 2016, 46(12):1242-1253 Deng Zichen, Cao Shanshan, Li Qingjun, et al. Dynamic Behavior of Sail Tower SPS Based on the Symplectic Runge-Kutta Method[J]. Scientia Sinica(Technologica), 2016, 46(12):1242-1253(in Chinese)
[22] Huang Y, Deng Z, Yao L. An Improved Symplectic Precise Integration Method for Analysis of the Rotating Rigid-Flexible Coupled System[J]. Journal of Sound and Vibration, 2007, 299(1/2):229-246
[23] Sun G. A Simple Way Constructing Symplectic Runge-Kutta Methods[J]. Journal of Computational Mathematics, 2000, 18(1):61-68
[24] Wie B, Roithmayr C M. Attitude and Orbit Control of a Very Large Geostationary Solar Power Satellite[J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3):439-451
[25] Omar M A, Shabana A A. A Two-Dimensional Shear Deformable Beam for Large Rotation and Deformation Problems[J]. Journal of Sound and Vibration, 2001, 243(3):565-576