论文:2018,Vol:36,Issue(2):203-210
引用本文:
李沛峰, 张彬乾, 陶于金, 陈真利, 李栋. 翼身融合布局中央机体翼型设计研究[J]. 西北工业大学学报
Li Peifeng, Zhang Binqian, Tao Yujin, Chen Zhenli, Li Dong. Center Body Airfoil Design for Blended Wing Body Configuration[J]. Northwestern polytechnical university

翼身融合布局中央机体翼型设计研究
李沛峰1, 张彬乾2, 陶于金1, 陈真利2, 李栋2
1. 西北工业大学 无人机研究所, 陕西 西安 710065;
2. 西北工业大学 航空学院, 陕西 西安 710072
摘要:
针对翼身融合布局中央机体翼型设计,在满足总体装载约束条件下,研究对称翼型、后卸载翼型、前加载翼型和前加载-后卸载翼型的气动影响规律。150座级BWB布局研究结果表明,采用对称翼型时,外翼需采用较大的负几何扭转角以实现静稳定设计状态下的正零升力矩,但升阻性能损失较大;采用前加载翼型时,受布局平面形状限制,不易达到正零升力矩;采用后卸载翼型或前加载-后卸载翼型时,合理设计前加载或后卸载的区域及大小,可获得升阻及力矩特性较为理想的气动设计结果。翼身融合飞翼布局无人机应用研究表明,采用具有前加载特征的"鹰勾"隐身前缘设计,气动性能损失小。
关键词:    翼身融合布局    翼型    CFD    民机    无人机   
Center Body Airfoil Design for Blended Wing Body Configuration
Li Peifeng1, Zhang Binqian2, Tao Yujin1, Chen Zhenli2, Li Dong2
1. Institute of UAV, Northwestern Polytechnical University, Xi'an 710065, China;
2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
To design the center-body airfoil of a blended wing body configuration, the aerodynamic effects of the symmetrical airfoil, trailing-edge reflexed airfoil, leading-edge loaded airfoil and leading-edge loaded plus trailing-edge reflexed airfoil are investigated based on the constraints of system arrangement. A 150-passenger BWB configuration is studied; for a center-body with symmetrical airfoil, the larger outer-wing geometrical twist should be used to fulfill the positive zero-lift pitching moment according to the design requirements of longitudinal static stability, however, lift to drag ratio shows a big decrease. For leading-edge loaded airfoil, it is difficult to achieve a positive zero-lift pitching moment because of the platform limitation. For trailing-edge reflexed airfoil or leading-edge loaded plus trailing-edge reflexed airfoil, it is easy to achieve ideal design results when reasonably designing the leading-edge loading and trailing-edge unloading. The application of a blended wing body UAV shows that the loss of aerodynamic characteristics is small when adopting the "eagle hook" stealth leading edge that has the characteristics of leading edge loading.
Key words:    airfoils    wings    computational fluid dynamics    design    aerodynamic configurations    lift drag ratio    blended wing body    civil transport    unmanned aerial vehicles(UAV)   
收稿日期: 2017-05-26     修回日期:
DOI:
通讯作者:     Email:
作者简介: 李沛峰(1982-),西北工业大学助理研究员,主要从事飞行器设计及空气动力学研究。
相关功能
PDF(2414KB) Free
打印本文
把本文推荐给朋友
作者相关文章
李沛峰  在本刊中的所有文章
张彬乾  在本刊中的所有文章
陶于金  在本刊中的所有文章
陈真利  在本刊中的所有文章
李栋  在本刊中的所有文章

参考文献:
[1] Okonkwo P, Smith H. Review of Evolving Trends in Blended Wing Body Aircraft Design[J]. Progress in Aerospace Sciences, 2016, 82:1-23
[2] Jiménez H, Tetik H, Mavris D. Assessment of Operational Compatibility for Future Advanced Vehicle Concepts[R]. AIAA-2012-0798
[3] Roman D, Allen J B, Liebeck R H. Aerodynamic Design Challenges of the Blended Wing Body Transport[R]. AIAA-2000-4335
[4] Liebeck R H. Design of the Blended-Wing-Body Subsonic Transport[R]. AIAA-2002-0002
[5] Re R J. Longitudinal Aerodynamic Characteristics and Wing Pressure Distributions of a Blended-Wing-Body Configuration at Low and High Reynolds Numbers[R]. NASA/TM-2005-213754
[6] Pritesh C Mody, Sho Sato, David K Hall, et al. Conceptual Design of an N+3 Hybrid Wing Body Subsonic Transport[R]. AIAA-2010-4812
[7] Liebeck R H. Design of the Blended Wing Body Subsonic Transport[J]. Journal of Aircraft, 2004, 41(1):10-25
[8] Roman D, Gilmore R, Wakayama S. Aerodynamics of High-Subsonic Blended-Wing-Body Configurations[R]. AIAA-2003-554
[9] Qin N, Vavalle A, Le Moigne A, et al. Aerodynamic Considerations of Blended Wing Body Aircraft[J]. Aerospace Sciences, 2004, 40:321-343
[10] Hileman J I, Spakovszky Z S, Drela M, et al. Airframe Design for Silent Fuel-Efficient Aircraft[J]. Journal of Aircraft, 2010, 47(3):956-969
[11] Hileman J I, Spakovszky Z S, Drela M. Aerodynamic and Aeroacoustic Three-Dimensional Design for a "Silent" Aircraft[R]. AIAA-2006-241
[12] Hileman J I, Spakovszky Z S, Drela M, et al. Airframe Design for "Silent Aircraft"[R]. AIAA-2007-453
[13] Sargeant M A, Hynes T P, Graham W R, et al. Stability of Hybrid-Wing-Body-Type Aircraft with Centerbody Leading-Edge Carving[J]. Journal of Aircraft, 2010, 47(3):970-974
[14] Pambagjo I E, Nakahashi K, Obayashi S, et al. Aerodynamic Design of a Medium Size Blended-Wing-Body Airplane[R]. AIAA-2001-0129
[15] Mialon B, Fol T, Bonnaud C. Aerodynamic Optimization of Subsonic Flying Wing Configurations[R]. AIAA-2002-2931
[16] Kuntawala N B, Hicken J E, Zingg D W. Preliminary Aerodynamic Shape Optimization of a Blended-Wing-Body Aircraft Configuration[R]. AIAA-2011-0642
[17] Li Peifeng, Zhang Binqian, Chen Yingchun, et al. Aerodynamic Design Methodology for Blended Wing Body Transport[J]. Chinese Journal of Aeronautics, 2012, 25(4):508-516
[18] 李沛峰,张彬乾,陈迎春,等. 无尾布局翼型的DISC设计研究[J]. 飞行力学, 2011, 29(4):49-52 Li Peifeng, Zhang Binqian, Chen Yingchun, et al. Airfoil Design for Tailless Configurations Using DISC Algorithm[J]. Flight Dynamic 2011:29(4):49-52(in Chinese)
[19] 桑建华. 飞行器隐身技术[M]. 北京:航空工业出版社,2013 Sang Jianhua. Low Observable Technologies of Aircraft[M]. Beijing, Aviation Industry Press,2013(in Chinese)
相关文献:
1.许军, 马晓平.飞翼无人机静气弹参数分析及操纵效率计算[J]. 西北工业大学学报, 2016,34(5): 747-753
2.许军, 马晓平.飞翼无人机嗡鸣气动弹性响应分析[J]. 西北工业大学学报, 2015,33(4): 588-595
3.王年华, 赵旭, 李晓东, 郭汉青.上凸下凹前后对称翼型低速气动特性研究[J]. 西北工业大学学报, 2014,32(3): 341-345
4.李盈盈, 周洲, 甘文彪.多鼓包技术在超临界翼型上的减阻特性研究[J]. 西北工业大学学报, 2013,31(4): 517-521
5.余雷, 宋文萍, 闫利.平底后缘风力机翼型气动噪声计算研究[J]. 西北工业大学学报, 2012,30(4): 513-517