论文:2017,Vol:35,Issue(5):804-812
引用本文:
胡亚琪, 贺尔铭, 杨佳佳, 肖文耀, 姚文旭. 海上浮动式风力机水动力辐射载荷仿真的状态空间实现[J]. 西北工业大学学报
Hu Yaqi, He Erming, Yang Jiajia, Xiao Wenyao, Yao Wenxu. State Space Realization of the Hydrodynamic Radiation Load for Offshore Floating Wind Turbines[J]. Northwestern polytechnical university

海上浮动式风力机水动力辐射载荷仿真的状态空间实现
胡亚琪, 贺尔铭, 杨佳佳, 肖文耀, 姚文旭
西北工业大学 航空学院, 陕西 西安 710072
摘要:
海上浮动式风力机水动力辐射载荷模拟的传统时域卷积方法计算效率较低,会增加风机控制系统分析和设计的困难,为了解决这一缺点,提出利用一组参数化状态空间模型替代时域卷积法来实现海上浮动式风力机水动力辐射载荷的等效计算方法。分别从频域和时域识别角度对状态空间模型进行系统识别;将状态空间模型与风机动力学分析程序FAST及其子程序HydroDyn进行耦合;以3种典型的浮动式风机平台为研究对象,分别利用状态空间法和时域卷积法仿真其在真实海洋环境下的水动力辐射载荷;以时域卷积法仿真结果为标准,从仿真精度和时间两方面综合评估状态空间法的计算效率。研究结果表明,与传统时域卷积法相比,状态空间实现法识别的海上浮动式风机水动力辐射载荷具有很高的模拟精度,其在非耦合和耦合计算方式下的仿真时间可分别减少70%和30%以上。状态空间实现法可有效解决时域卷积法的不足,为海上浮动式风力机的设计节省时间成本。
关键词:    海上浮动式风力机    水动力辐射载荷    状态空间模型    参数识别    时域    频域    卷积   
State Space Realization of the Hydrodynamic Radiation Load for Offshore Floating Wind Turbines
Hu Yaqi, He Erming, Yang Jiajia, Xiao Wenyao, Yao Wenxu
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The traditional time-domain convolution method on hydrodynamic radiation load calculating for offshore floating wind turbines is complicated in calculation and low in computation efficiency, and it can increase difficulty in the analysis and design of the wind turbine control systems. For that, a parametric state space model as an equivalent calculation method replacing the numerical convolution method is proposed to calculate the hyDrodynamic radiation load of offshore wind turbines. Four parameter identification methods, two in the frequency domain and two in the time domain, are selected to identify the state space model, and these identified state space models were integrated within the HydroDyn code, which is a hydrodynamic calculating subroutine of the famous high fidelity wind turbine simulation tool FAST. Taking three typical platforms of offshore floating wind turbines as examples, hydrodynamic radiation loads are simulated using the proposed state space method and the traditional time domain convolution method respectively under different wave conditions. The calculation efficiency is evaluated from two aspects of the computational precision and time. Simulation results show that the state space method has sufficient accuracy, and it can reduce 90% and 30% computational time in uncoupled and coupled calculation style. The state space method could make up for the shortcoming of the traditional convolution method, and it could save time cost for designing of offshore floating wind turbines.
Key words:    offshore floating wind turbine    hydrodynamic radiation load    state space model    parameter identification    time domain    frequency domain    convolution   
收稿日期: 2017-03-01     修回日期:
DOI:
基金项目: 国家自然科学基金(51675426)资助
通讯作者:     Email:
作者简介: 胡亚琪(1985-),西北工业大学博士研究生,主要从事结构动力学与振动控制研究。
相关功能
PDF(1690KB) Free
打印本文
把本文推荐给朋友
作者相关文章
胡亚琪  在本刊中的所有文章
贺尔铭  在本刊中的所有文章
杨佳佳  在本刊中的所有文章
肖文耀  在本刊中的所有文章
姚文旭  在本刊中的所有文章

参考文献:
[1] 贺尔铭, 胡亚琪, 张扬. 基于TMD的海上浮动风力机结构振动控制研究[J]. 西北工业大学学报, 2014, 32(1):55-61 He Erming, Hu Yaqi, Zhang Yang. Structural Vibration Control of Offshore Floating Wind Turbine Based on TMD[J]. Journal of Northwestern Polytechnical University, 2014, 32(1):55-61(in Chinese)
[2] He E M, Hu Y Q, Zhang Y. Optimization Design of Tuned Mass Damper For Vibration Suppression of a Barge-type Offshore Floating Wind Turbine[J]. Journal of Engineering for the Maritime Environment, 2017, 231(1):302-315
[3] 贺尔铭, 张扬, 胡亚琪. 3种典型海上浮动式风力机动力学特性比较分析[J]. 太阳能学报, 2015, 36(12):2874-2881 He Erming, Zhang Yang, Hu Yaqi. Comparison And Analysis of Dynamic Characteristics of Three Typical Floating Wind Turbine[J]. Acta Energiae Solaris Sinica, 2015, 36(12):2874-2881(in Chinese)
[4] Jonkman J M, Sclavounos P D. Development of Fully Coupled Aeroelastic And Hydrodynamic Models for Offshore Wind Turbines[R]. National Renewable Energy Laboratory, Golden, CO, 2006
[5] Jonkman J M. Dynamics of Offshore Floating Wind Turbines——Model Development And Verification[J]. Wind Energy, 2009, 12(5):459-492
[6] Sheng W, Alcom R and Lewis A. A New Method for Radiation Forces for Floating Platforms in Waves[J]. Ocean Engineering, 2015, 105:43-53
[7] Unneland K. Identification And Order Reduction of Radiation Force Models of Marine Structures[D]. Trondheim, Norwegian University of Science and Technology, 2007
[8] Taghipour R, Perez T, Moan T. Hybrid Frequency-Time Domain Models for Dynamic Response Analysis of Marine Structures[J]. Ocean Engineering, 2008, 35(7):685-705
[9] Taghipour R, Perez T, Moan T. Time-Domain Hydroelastic Analysis of a Flexible Marine Structure Using State-Space Models[J]. Journal of Offshore Mechanics and Arctic Engineering, 2009, 13(1):011603
[10] Hatecke H. The Impulse Response Fitting And Ship Motions[J]. Ship Technology Research, 2015, 62(2):97-106
[11] Alves M. Numerical Simulation of The Dynamics of Point Absorber Wave Energy Converters Using Frequency And Time Domain Approaches[D]. Lisbon, Technical University of Lisbon, 2012
[12] Armesto J A, Guanche R, Iturrioz A, et al. Identification of State-Space Coefficients for Oscillating Water Columns Using Temporal Series[J]. Ocean Engineering, 2014,79:43-49
[13] Rogne Ø Y, Moan T, Ersdal S. Identification of Passive State-Space Models of Strongly Frequency Dependent Wave Radiation Forces[J]. Ocean Engineering, 2014, 92:114-128
[14] Duarte T, Alves M, Jonkman J, et al. State-Space Realization of The Wave-Radiation Force within FAST[C]//Proceedings of the ASME 201332nd International Conference on Ocean, Offshore and Arctic Engineering, Nantes, France, 2013
[15] Jonkman J M. Dynamics Modeling And Loads Analysis of An Offshore Floating Wind Turbine[D]. Boulder, University of Colorado, 2007
[16] Perez T, Fossen T. Time-vs. Frequency-Domain Identification of Parametric Radiation Force Models for Marine Structures at Zero Speed[J]. Modeling, Identification and Control, 2008, 29(1):1-19
[17] Alves M, Vicente M, Sarmento A, et al. Implementation and Verification of a Time Domain Model to Simulate the Dynamics of OWCs[C]//9th European Wave and Tidal Energy Conference, Southampton, UK, 2011
[18] Perez T, Fossen T. Practical Aspects of Frequency-Domain Identification of Dynamic Models of Marine Structures from Hydrodynamic Data[J]. Ocean Engineering, 2011, 38(2):426-435
[19] Zygarlicki J, Mroczka J. Short Time Algorithm of Power Waveforms Fundamental Harmonic Estimation with Use of Prony's Methods[J]. Metrology and Measurement Systems, 2011, 18(3):371-378
[20] Alvin K F, Robertson A N, Reich G W, et al. Structural System Identification:from Reality to Models[J]. Computers & Structures, 2003, 81(12):1149-1176
[21] Jonkman J. Definition of the Floating System for Phase IV of OC3[R]. National Renewable Energy Laboratory(NREL), Golden, CO, 2010