论文:2017,Vol:35,Issue(3):528-535
引用本文:
黄得刚, 赵宏宇, 何启志, 章卫国. 无动力无人机跟踪下滑直线自适应非线性制导律设计[J]. 西北工业大学学报
Huang Degang, Zhao Hongyu, He Qizhi, Zhang Weiguo. Design of Adaptive Nonlinear Guidance Law for Unpowered UAV Tracking a Gliding Line[J]. Northwestern polytechnical university

无动力无人机跟踪下滑直线自适应非线性制导律设计
黄得刚1, 赵宏宇1, 何启志2, 章卫国2
1. 兵器工业集团航空弹药研究院, 黑龙江 哈尔滨 150036;
2. 西北工业大学 自动化学院, 陕西 西安 710129
摘要:
以无人机失去推力后,如何使其跟踪一条给定下滑直线为研究背景,提出了一种跟踪下滑直线的自适应非线性制导方法。首先根据几何关系推导得到跟踪下滑直线的横纵向制导律,并证明了所得制导律的稳定性;然后考虑到无动力状态下横纵向制导之间的影响较为明显,为了提高系统的跟踪精度以及抗风扰动能力,将所得制导律转化为一个二阶黏滞阻尼振荡系统,从改善该振荡系统收敛速率的角度出发,设计了制导律的自适应方案。仿真结果表明,在无风和有风扰动的条件下,所提出的方法均可提高系统的跟踪精度。
关键词:    无动力    自适应    非线性制导    黏滞阻尼震荡    Hebb学习法则   
Design of Adaptive Nonlinear Guidance Law for Unpowered UAV Tracking a Gliding Line
Huang Degang1, Zhao Hongyu1, He Qizhi2, Zhang Weiguo2
1. Aviation Ammunition Research Institute of Weapon Industry Group, Harbin 150036, China;
2. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
For tracking a given trajectory when UAV lost power, this paper presents a method of nonlinear adaptive guidance for following a line. Firstly, according to the geometric relationship, longitudinal and lateral guidance laws are designed and their stabilities are proved. Secondly, considering the significant influence between longitudinal and lateral laws as well as promoting the tracking accuracy and the anti-wind ability, the guidance laws are transformed into the two-order viscous systems with damping and oscillation and then the adaptive schemes are designed in order to improve the convergence of the oscillating system. Finally simulation results show that the proposed method increases tracking accuracy, despite being constantly subjected to wind disturbance.
Key words:    unpowered    adaptive    nonlinear guidance    viscous damped oscillations    Hebb learning law   
收稿日期: 2017-03-06     修回日期:
DOI:
通讯作者:     Email:
作者简介: 黄得刚(1986-),兵器工业集团航空弹药研究院工程师,主要从事飞行器路径规划、导航制导与控制及飞行器集群协同制导控制研究。
相关功能
PDF(1259KB) Free
打印本文
把本文推荐给朋友
作者相关文章
黄得刚  在本刊中的所有文章
赵宏宇  在本刊中的所有文章
何启志  在本刊中的所有文章
章卫国  在本刊中的所有文章

参考文献:
[1] Menon P K, Vaddi S S, Sengupta P. Robust Landing Guidance Law for Impaired Aircraft[J]. Journal of Guidance, Control, and Dynamics, 2012, 35(6):1865-1877
[2] Rolf R, Anthony C. Fault Tolerant Flight Control via Adaptive Neural Network Augmentation[C]//Guidance, Navigation, and Control Conference and Exhibit, 1998:1722-1728
[3] Tandale M, Valasek J. Fault-Tolerant Structured Adaptive Model Inversion Control[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(3):635-642
[4] Nhan N, Kalmanje K, John K, et al. Dynamics and Adaptive Control for Stability Recovery of Damaged Asymmetric Aircraft[C]//AIAA Guidance Navigation and Control Conference, 2006:1-24
[5] Nguyen N T, Krishnakumar K S, Kaneshige J T, et al. Flight Dynamics and Hybrid Adaptive Control of Damaged Aircraft[J]. Journal of Guidance, Control, and Dynamics, 2008, 31(3):751-764
[6] Borst C, Sjer F A, Mulder M, et al. Ecological Approach to Support Pilot Terrain Awareness after Total Engine Failure[J]. Journal of Aircraft, 2008, 45(1):159-171
[7] Huang Degang, Wu Yunyan. A Method of Height Adjustment for Unpowered Emergency Landing[J]. Applied Mechanics, Materials and Manufacturing, 2014, 670/671:1410-1415
[8] Yufei S, Ziaur R. An Automatic Computer-Aided Detection System for Aircraft Emergency Landing[C]//Proceedings of the AIAA Infotech at Aerospace Conference, 2011:779-788
[9] Ted C, Amy P. Cockpit Decision-Aids for the Task of Emergency Trajectory Generation[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, 2001:1-11
[10] Atkins E M, Portillo I A, Strube M J. Emergency Flight Planning Applied to Total Loss of Thrust[J]. Journal of Aircraft, 2006, 43(4):1205-1216
[11] Eng P L, Mejias X Liu, Walker R. Automating Human thought Processes for a UAV Forced Landing[J]. Journal of Intelligent and Robotic Systems, 2010, 57(1/2/3/4):329-349
[12] Mejias L, Eng P. Controlled Emergency Landing of an Unpowered Unmanned Aerial System[J]. Journal of Intelligent & Robotic Systems, 2013, 70(1/2/3/4):421-435
[13] Mejias L, Fitzgerald D L, Eng P C, et al. Aerial Vehicles[M]. Austria, InTech Press, 2009:415-442
[14] Eng P, Mejias L, Walker R A, et al. Simulation of a Fixed-Wing UAV Forced Landing with Dynamic Path Planning[C]//Australasian Conference on Robotics and Automation, 2007:1-11
[15] Mejias L, Eng P. Experimental Validation of an Unpowered Unmanned Aerial System:Application to Forced Landing Scenarios[C]//Digital Proceedings of the 2012 International Conference on Unmanned Aircraft Systems, 2012:1-12
[16] Boeing Corporation. Statistical Summary of Commercial Jet Airplane Accidents, Worldwide Operations 1959-2013[EB/OL]. (2015-04-08)[2017-05-16]. http://www.boeing.com/news/techissues/pdf/statsum.pdf
[17] 刘金琨. 先进PID控制MATLAB仿真[M]. 北京:电子工业出版社, 2004:153-158 Liu Jinkun. Mathab Simulation of Advanced PID Control[M]. Beijing, Electrouic Industry Press, 2004:153-158(in Chinese)
[18] 黄得刚, 章卫国, 张秀林. 无人机无动力滑行横向自适应非线性制导律设计[J]. 控制理论与应用, 2014, 31(11):1486-1491 Huang Degang, Zhang Weiguo, Zhang Xiulin. Design of the Lateral Adaptive Nonlinear Guidance Law for Unpowered Unmanned Aerial Vehicle Gliding[J]. Control Theory & Applications, 2014, 31(11):1486-1491(in Chinese)
[19] Eng P. Path Planning, Guidance and Control for a UAV Forced Landing[M]. Queensland,Australia, Queensland University of Technology, 2011:101-106
相关文献:
1.黄得刚, 章卫国, 邵山, 王志刚, 张秀林, 杨立本.UAV无动力螺线下滑纵向自适应非线性制导律设计[J]. 西北工业大学学报, 2015,33(2): 309-314