论文:2017,Vol:35,Issue(2):321-325
引用本文:
都琳, 张宇. 浅水波传播问题的动力学分析与数值计算[J]. 西北工业大学学报
Du Lin, Zhang Yu. Dynamical Analysis and Numerical Computation of Shallow Water Wave Propagation[J]. Northwestern polytechnical university

浅水波传播问题的动力学分析与数值计算
都琳1, 张宇2
1. 西北工业大学 理学院, 陕西 西安 710072;
2. 西北工业大学 力学与土木建筑学院, 陕西 西安 710072
摘要:
b族方程概括了一大类浅水波动力学问题,研究发现其中的Camassa-Holm方程(b=2)和Degasperis-Procesi方程(b=3)均存在稳定传播的尖波解。在已有b族方程统一对称形式的基础上,针对b=0这一特殊情形,构造了一种等价于多辛Box格式的新隐式多辛格式,用于探索这一特殊情形下b族方程是否存在稳定传播的尖波解。通过数值模拟,一方面,验证了构造的隐式多辛格式具有很好的保结构性能和良好的长时间数值稳定性;另一方面,从数值模拟结果中发现在b=0这一特殊情形下,b族方程不存在稳定传播的尖波解。
关键词:    b族方程    多辛方法    尖波解    守恒律   
Dynamical Analysis and Numerical Computation of Shallow Water Wave Propagation
Du Lin1, Zhang Yu2
1. School of Natural and Applied Sciences, Northwestern Polytechnica l University, Xi'an 710072, China;
2. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The b-family equation, which contains a general family of shallow water wave equations with the different values of b, has shown the so-called peaked wave solutions with the cases when b=2 (Camassa-Holm equation) and b=3 (Degasperis-Procesi equation). To explore whether a special case when b=0 exists the stable peaked solution, based on the multi-symplectic form, the multi-symplectic Box scheme to construct a new implicit scheme is applied focusing on this case. The numerical experiments show that the constructed scheme has well structure-preserving property and good long time numerical stability. Furthermore, we can also find that there do not exist the stable propagation of peaked solution from the numerical results in the special case when b=0.
Key words:    b-family equation    multi-symplectic method    peaked solution    conservation law   
收稿日期: 2016-09-13     修回日期:
DOI:
基金项目: 国家自然科学基金(11672233、11302169、11372253)、陕西省自然科学基金(2015JM1026)与航天支撑技术基金(2015-HT-XGD)资助
通讯作者:     Email:
作者简介: 都琳(1981-),女,西北工业大学副教授、博士,主要从事非线性动力学、计算力学的研究。
相关功能
PDF(1111KB) Free
打印本文
把本文推荐给朋友
作者相关文章
都琳  在本刊中的所有文章
张宇  在本刊中的所有文章

参考文献:
[1] Camassa R, Holm D D. An Integrable Shallow-Water Equation with Peaked Solitons[J]. Physical Review Letters, 1993, 71(11):1661-1664
[2] Degasperis A, Procesi M, Asymptotic Integrability.//Degasperis A, Gaeta G. Symmetry and Perturbation Theory[M]. Singapore, World Scientific, 1999:23-37
[3] Bridges T J. Multi-Symplectic Structures and Wave Propagation[J]. Mathematical Proceedings of The Cambridge Philosophical Society, 1997, 121(1):147-190
[4] Bridges T J. A Geometric Formulation of the Conservation of Wave Action and Its Implications for Signature and the Classification of Instabilities[J]. Proceeding of the Royal Society, 1997, 456:1365-1395
[5] Bridges T J, Reich S. Multi-Symplectic Integrators:Numerical Schemes for Hamiltonian PDEs That Conserve Symplecticity[J]. Physics Letters A, 2001, 284(4/5):184-193
[6] Feng K. On Difference Schemes and Symplectic Geometry[C]//Proceedings of the 5th International Symposium on Differential Geometry & Differential Equations, 1985:42-58
[7] Cohen D, Owren B, Raynaud X. Multi-Symplectic Integration of the Camassa-Holm Equation[J]. Journal of Computational Physics, 2008, 227(11):5492-5512
[8] Zhu H J, Song S H, Tang Y F. Multi-Symplectic Wavelet Collocation Method for the Nonlinear Schrödinger Equation and the Camassa-Holm Equation[J]. Computer Physics Communications, 2011, 182(3):616-627
[9] Zhang Y, Deng Z C, Hu W P. Multisymplectic Method for the Camassa-Holm Equation[J]. Advances in Difference Equations, 2016, 7:1-2
[10] Hu W P, Deng Z C, Zhang Y. Multi-Symplectic Method for Peakon-Antipeakon Collision of Quasi-Degasperis-Procesi Equation[J]. Computer Physics Communications, 2014, 185(7):2020-2028
[11] Bridges T J, Reich S. Multi-Symplectic Spectral Discretizations for the Zakharov-Kuznetsov and Shallow Water Equations[J]. Physica D, 2001, 152:491-504
[12] Hu W P, Deng Z C. Multi-Symplectic Method for Generalized Boussinesq Equation[J]. Applied Mathematics and Mechanics(English Edition), 2008, 29(7):927-932
[13] Degasperis A, Holm D D, Hone A N W. A New Integrable Equation with Peakon Solutions[J]. Theoretical And Mathematical Physics, 2002, 133(2):1463-1474
[14] Kolev B. Some Geometric Investigations on the Degasperis-Procesi Shallow Water Equation[J]. Wave Motion, 2009, 46(6):412-419
[15] Yu C H, Sheu T W H. A Dispersively Accurate Compact Finite Difference Method for the Degasperis-Procesi Equation[J]. Journal of Computational Physics, 2013, 236:493-512