论文:2017,Vol:35,Issue(2):232-239
引用本文:
袁冰, 常山, 吴立言, 刘更, 陈策. 对角修形对斜齿轮系统准静态及动态特性的影响研究[J]. 西北工业大学学报
Yuan Bing, Chang Shan, Wu Liyan, Liu Geng, Chen Ce. Effect of Cross Modification on the Quasi-Static and Dynamic Characteristics of Helical Gear System[J]. Northwestern polytechnical university

对角修形对斜齿轮系统准静态及动态特性的影响研究
袁冰1, 常山1,2, 吴立言1, 刘更1, 陈策3
1. 西北工业大学 陕西省机电传动与控制工程实验室, 陕西 西安 710072;
2. 中国船舶重工集团 第七○三研究所, 黑龙江 哈尔滨 150078;
3. 陆航研究所 机体发动机室, 北京 101121
摘要:
基于齿面承载接触分析方法,建立了斜齿轮副啮合刚度和轮齿修形耦合非线性激励计算模型,研究了对角修形对齿面载荷分布、综合啮合刚度以及承载传递误差的影响。基于Timoshenko梁理论建立了考虑轴段变形的斜齿轮-转子-轴承系统广义有限元模型,通过分离系统传递误差激振力,将系统参变微分方程组转化为定常微分方程组,实现了快速求解。以传递误差激振力波动量最小为优化目标,采用图解法得到了最佳对角修形参数。研究表明:对于修形齿轮副,啮合刚度波动量并不是影响齿轮传动系统振动的主导因素,传递误差激振力波动量的大小决定了系统振动的剧烈程度;对角修形不仅对轮齿刚度的削弱程度较小,而且可以显著降低动态传递误差均方根值和轴承动载荷波动量,进而降低系统振动噪声。
关键词:    斜齿轮    对角修形    啮合刚度    传递误差    轴承动载荷    傅里叶级数    均方差   
Effect of Cross Modification on the Quasi-Static and Dynamic Characteristics of Helical Gear System
Yuan Bing1, Chang Shan1,2, Wu Liyan1, Liu Geng1, Chen Ce3
1. Shaanxi Engineering Laboratory for Transmissions and Controls, Northwestern Polytechnical University, Xi'an 710072, China;
2. China Shipbuilding Industry Corporation 703 Institute, Harbin 150078, China;
3. Helicopter and Engine Department, Army Aviation Institution, Beijing 101121, China
Abstract:
A nonlinear excitation model coupling mesh stiffness and tooth modification is established based on loaded tooth contact analysis method. The effects of cross modification on load distribution, mesh stiffness and loaded transmission error of helical gear are investigated. Considering shaft deflection, a generalized finite element model of helical-rotor-bearing system is developed based on Timoshenko beam theory. By separating transmission error exciting force, the differential equation with variable coefficients is transformed into ordinary differential equation, so the equation is solved fast. The best cross modification parameters are obtained based on graphical method with the objective of minimum of fluctuation of transmission error exciting force. The results show that mesh stiffness fluctuation is not the dominant factor affecting the vibration of gear transmission with modification, the system vibration is determined by the fluctuation of transmission error exciting force, and the cross modification not only weakens the gear mesh stiffness less, but also decreases the mean square error of dynamic transmission error and the fluctuation of dynamic bearing load significantly, thereby reduces gear transmission vibration and noise.
Key words:    helical gear    cross modification    mesh stiffness    transmission error    dynamic bearing load    Fourier series    mean square error   
收稿日期: 2016-09-27     修回日期:
DOI:
基金项目: 国家自然科学基金重点项目(51535009)与高等学校学科创新引智计划(B13044)资助
通讯作者:     Email:
作者简介: 袁冰(1987-),西北工业大学博士研究生,主要从事齿轮啮合理论及机械系统动力学研究。
相关功能
PDF(2158KB) Free
打印本文
把本文推荐给朋友
作者相关文章
袁冰  在本刊中的所有文章
常山  在本刊中的所有文章
吴立言  在本刊中的所有文章
刘更  在本刊中的所有文章
陈策  在本刊中的所有文章

参考文献:
[1] Conry T F, Seireg A. A Mathematical Programming Technique for the Evaluation of Load Distribution and Optimal Modifications for Gear Systems[J]. Journal of Engineering for Industry, 1973, 95(4):1115-1122
[2] Tavakoli M S, Houser D R. Optimum Profile Modifications for the Minimization of Static Transmission Errors of Spur Gears[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1986, 108(1):86-94
[3] Lin H H, Oswald F B, Townsend D P. Dynamic Loading of Spur Gears with Linear or Parabolic Tooth Profile Modifications[J]. Mechanism and Machine Theory, 1994, 29(8):1115-1129
[4] Maatar M, Velex P. Quasi-Static and Dynamic Analysis of Narrow-Faced Helical Gears with Profile and Lead Modifications[J]. Journal of Mechanical Design, 1997, 119(4):474-480
[5] Bonori G, Barbieri M, Pellicano F. Optimum Profile Modifications of Spur Gears By Means of Genetic Algorithms[J]. Journal of Sound and Vibration, 2008, 313(3):603-616
[6] Chen Z, Shao Y. Mesh Stiffness Calculation of a Spur Gear Pair with Tooth Profile Modification and Tooth Root Crack[J]. Mechanism and Machine Theory, 2013, 62:63-74
[7] Ghosh S S, Chakraborty G. On Optimal Tooth Profile Modification for Reduction of Vibration and Noise in Spur Gear Pairs[J]. Mechanism and Machine Theory, 2016, 105:145-163
[8] 王宪法, 李华敏. 窄斜齿轮对角修形的最佳修形量计算及修形区域的选择[J]. 哈尔滨工业大学学报, 1993, 25(5):62-66 Wang Xianfa, Li Huamin. The Calculation of Optimal Diagonal Modification Values and Selection of Modification Area of the Narrow Helical Gears[J]. Journal of Harbin Institute of Technology, 1993, 25(5):62-66 (in Chinese)
[9] 蒋进科, 方宗德, 王峰. 降低斜齿轮噪声的对角修形优化设计[J]. 振动与冲击, 2014, 33(7):63-67 Jiang Jinke, Fang Zongde. Optimal Design with Diagonal Modification for Reducing Helical Gear Noise[J]. Journal of Vibration and Shock, 2014, 33(7):63-67 (in Chinese)
[10] 常乐浩, 刘更, 吴立言. 齿轮综合啮合误差计算方法及对系统振动的影响[J]. 机械工程学报, 2015, 51(1):123-130 Chang Lehao, Liu Geng, Wu Liyan. Determination of Composite Meshing Errors and Its Influence on the Vibration of Gear System[J]. Journal of Mechanical Engineering, 2015, 51(1):123-130 (in Chinese)
[11] Özgüven H N, Houser D R. Dynamic Analysis of High Speed Gears By Using Loaded Static Transmission Error[J]. Journal of Sound and Vibration, 1988, 125(1):71-83
[12] Velex P, Maatar M. A Mathematical Model for Analyzing the Influence of Shape Deviations and Mounting Errors on Gear Dynamic Behaviour[J]. Journal of Sound and Vibration, 1996, 191(5):629-660
[13] 王奇斌, 张义民. 齿向修形直齿轮系统动力学特性分析[J]. 振动工程学报, 2016, 29(1):61-68 Wang Qibin, Zhang Yimin. Dynamic Characteristics Analysis of a Spur Gear System with the Lead Crown Relief[J]. Journal of Vibration Engineering, 2016, 29(1):61-68 (in Chinese)