论文:2017,Vol:35,Issue(1):121-127
引用本文:
岳哲, 廉保旺, 唐成凯. 惯导辅助下的单星高动态定位算法[J]. 西北工业大学学报
Yue Zhe, Lian Baowang, Tang Chengkai. An Algorithm of Inertial Aided Single Satellite Navigation with High Dynamic[J]. Northwestern polytechnical university

惯导辅助下的单星高动态定位算法
岳哲, 廉保旺, 唐成凯
西北工业大学 电子信息学院, 陕西 西安 710072
摘要:
在战争区域或星外探索环境中星座型导航损毁或缺失条件下,单星定位系统可以有效补充星座型导航系统的缺失。但是,当定位目标具有高动态特性时,单星定位的定位结果由于定位目标的移动存在较大误差,不能满足实际需求。因此,提出了一种惯导辅助下的单星高动态定位算法,该算法利用惯导器件得到定位目标高动态条件下的坐标偏移,结合单星定位中基于积分多普勒测量值与惯导系统得到的伪距差信息,通过融合滤波得到目标的定位信息,从而实现高动态下目标的定位。将所提出算法与多普勒单星定位算法及伪距率辅助单星定位算法进行仿真对比,在定位目标的运动速度为100 m/s,系统运行时间为300 s下,新算法的定位误差仅为多普勒单星定位算法的2%,伪距率辅助单星定位算法的3.5%,可以有效为高动态定位目标提供定位导航服务。
关键词:    单星定位    惯导辅助    伪距差    卡尔曼滤波    牛顿迭代    泰勒展开   
An Algorithm of Inertial Aided Single Satellite Navigation with High Dynamic
Yue Zhe, Lian Baowang, Tang Chengkai
School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Under the conditions of the damage or loss of the satellite navigation system in the environment of war area or star exploration, the single satellite navigation can efficiently make up for the loss of navigation system. However, if the target is characterized with high dynamics, the error of single satellite navigation is far away from the practical demands. Thus, this paper proposed an algorithm of single satellite with high dynamics under the guidance of inertial navigation. And under the circumstance of high dynamics, we employ the inertial navigation component to get the coordinate offsets of the target, and utilize the pseudo-range difference of the integral Doppler measurement value and the inertial navigation system, use the fused filtering to obtain the location information in high dynamic conditions, and reach the location for target under the high dynamics. Comparing the algorithm proposed in this paper with the Doppler single satellite navigation and under the aid of pseudo range rate algorithm, we can conclude that at the speed of 100 m/s for the location targets, the position error is only 2% to the Doppler single satellite navigation algorithm and 3.5% to the pseudo range rate aided single position algorithm after 300 s,it can effectively provide positioning and navigation services for high dynamic positioning.
Key words:    single satellite navigation    inertial aided    pseudo-range difference    Kalman filter    Newton-Raphson method    Taylor series   
收稿日期: 2016-09-08     修回日期:
DOI:
基金项目: 国家自然科学基金(61301094)资助
通讯作者:     Email:
作者简介: 岳哲(1991-),西北工业大学博士研究生,主要从事卫星导航与组合导航研究。
相关功能
PDF(1334KB) Free
打印本文
把本文推荐给朋友
作者相关文章
岳哲  在本刊中的所有文章
廉保旺  在本刊中的所有文章
唐成凯  在本刊中的所有文章

参考文献:
[1] Elmowafy A. GNSS Multi-Frequency Receiver Single-Satellite Measurement Validation Method[J]. GPS Solutions, 2014, 18(4):553-561
[2] Afifi A, El-RABBANY A. An Improved Between-Satellite Single-Difference Precise Point Positioning Model for Combined GPS/Galileo Observations[J]. Journal of Applied Geodesy, 2015, 9(2):101-111
[3] Guo B, Zhang X, Ren X. High-Precision Coseismic Displacement Estimation with a Single-frequency GPS Receiver[J]. Geophysical Journal International, 2015,202(1):612-523
[4] 商春恒. 单星无源定位中多普勒信息参数测量技术研究[D]. 北京:北京理工大学, 2015 Shang Chunheng. Research High-Precision Measurement of Doppler in Passive Location by Single Satellite[D]. Beijing, Beijing Institute of Technology, 2015(in Chinese)
[5] Liu A F. Performance Analysis of Interference Localization Based on Doppler Frequency Shift of a Single Satellite[C]//Lecture Notes in Electrical Engineering, Wuhan, 2013:35-43
[6] Li A P, Cheng S Y, Li J C. The Innovational Method to Locate the Transponder Interference Based on the Single GEO Satellite[C]//31th URSI General Assembly and Scientific Symposium, Beijing, 2014:1-4
[7] Li X J. Research on Technique of Single-Satellite Orbit Determination for GEO Satellite of Partial Sub-Satellite Point[C]//Lcture Notes in Electrical Engineering, Wuhan, 2013:163-172
[8] 唐成凯,廉保旺,张玲玲. 卫星通信中16APSK调制下带有记忆性的后置预失真算法[J]. 西北工业大学学报, 2014, 32(6):962-966 Tang Chengkai, Lian Baowang, Zhang Lingling. Post Predistortion of 16APSK Modulation with Memory and Nonlinear Effect in Satellite Communication[J]. Journal of Northwestern Polytechnical University, 2014, 32(6):962-966(in Chinese)
[9] 唐成凯,廉保旺,张玲玲. 卫星通信系统双向中继转发自干扰消除算法[J]. 西安交通大学学报, 2015,49(2):74-79 Tang Chengkai, Lian Baowang, Zhang Lingling. An Algorithm to Eliminate Self-interference of Bidirectional Relaying for Satellite Communication Systems[J]. Journal of Xi'an Jiaotong University, 2015,49(2):74-79(in Chinese)
[10] Cosmin P, Lucian D, Larisa F. The Precision of the GPS Positioning System and GPS Phase Observations Compensation by Least Squares Method[C]//International Multidisciplinary Scientific Geo Conference Surveying Geology and Mining Ecology Management, 2015:875-882
[11] Shcheglov K, Smukowski D, Ezal K, Johnson G. The World's First MEMs Navigation Grade Inertial Navigation System[C]//Institute of Navigation International Technical Meeting, 2015:588-592
[12] Dumitrascu A, Tamas R D, Caruntu G, Bobirca D. An Integrated Platform for Inertial Navigation Systems[C]//Proceedings of SPIE——The International Society for Optical Engineering, Constanta, Romania, 2015:1-4
[13] Kang C H, Kim S Y, Park C G. Global Navigation Satellite System Interference Tracking and Mitigation Based on an Adaptive Fading Kalman Filter[J]. IET Radar Sonar and Navigation, 2015, 9(8):1030-1039
[14] Zhang Y G, Dang Y F, Li N. An Integrated Navigation Algorithm Based on Distributed Kalman Filter[C]//2015 IEEE International Conference on Information and Automation, 2015:2132-2135
[15] Lin S. Assisted Adaptive Extended Kalman Filter for Low-Cost Single-Frequency GPS/SBAS Kinematic Positioning[J]//GPS Solutions, 2015,19(2):215-223