论文:2017,Vol:35,Issue(1):26-31
引用本文:
兰天一, 林辉, 张克军. 石英灯辐射式气动热实验的分数阶迭代学习控制策略[J]. 西北工业大学学报
Lan Tianyi, Lin Hui, Zhang Kejun. Fractional Order Iterative Learning Control Strategy for Quartz Lamp Radiation Aerodynamic Heating Experiment[J]. Northwestern polytechnical university

石英灯辐射式气动热实验的分数阶迭代学习控制策略
兰天一1, 林辉1, 张克军2
1. 西北工业大学 自动化学院, 陕西 西安 710129;
2. 西北工业大学 理学院, 陕西 西安 710129
摘要:
气动热实验是一种在地面上模拟考核飞行热环境下飞行器性能的有效手段。为提高实验中谱线跟踪性能,根据谱线的固定不变特性,利用分数阶迭代学习控制策略进行模拟实验。通过严格的理论分析,给出了分数阶PDα型迭代学习控制器的收敛条件,并在此理论意义下进行谱线跟踪实验。实验结果表明:所提控制算法具有较小的动态控制误差和稳态控制误差,且缩短了实验过程中谱线的调试时间,提高了实验的有效性。
关键词:    气动热    控制器    石英灯辐射    截止频率    迭代学习控制    试验分析   
Fractional Order Iterative Learning Control Strategy for Quartz Lamp Radiation Aerodynamic Heating Experiment
Lan Tianyi1, Lin Hui1, Zhang Kejun2
1. School of Automation, Northwestern Polytechnical University, Xi'an 710129, China;
2. School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
Aerodynamic heating experiment is an effective method to simulate the performance of aircraft under thermal environment on the ground. In order to improve the performance of the spectral tracking, the method of fractional order PDαtype iterative learning control strategy is proposed to simulate the experiment, according to the constant characteristics of spectral during the experiment. With rigorous analysis, the convergence conditions of the fractional order iterative learning controller are given along the iteration axis, and the spectral tracking experiment is carried out in such theoretical significance. The experimental results indicate that the proposed control method obtains small dynamic control and steady state control errors, and shortens the time of the experiment process, and improves the validity of the experiment.
Key words:    aerodynamic heating    controllers    quartz lamp radiation    cutoff frequency    iterative learning control    design of experiments   
收稿日期: 2016-09-20     修回日期:
DOI:
基金项目: 航空科学基金(20140953016)资助
通讯作者:     Email:
作者简介: 兰天一(1981-),西北工业大学博士研究生,主要从事迭代学习控制研究。
相关功能
PDF(1424KB) Free
打印本文
把本文推荐给朋友
作者相关文章
兰天一  在本刊中的所有文章
林辉  在本刊中的所有文章
张克军  在本刊中的所有文章

参考文献:
[1] Xie Gongnan, Qi Wang, Sunden B, et al. Thermomechanical Optimization of Lightweight Thermal Protection System under Aerodynamic Heating[J]. Applied Thermal Engineering, 2013, 59(1):425-434
[2] Wu Dafang, Wang Yuewu, Wu Shuang, et al. Research on Control of Heat Flux Environment Simulation for High-Speed Aircraft[J]. Advanced Materials Research, 2013, 705:528-533
[3] 孟松鹤,杨强,霍施宇,等. 一体化热防护技术现状和发展趋势[J]. 宇航学报, 2013, 34(10):1295-1302 Meng Songhe, Yang Qiang, Huo Shiyu, et al. State-of-Arts and Trend of Integrated Thermal Protection Systems[J]. Journal of Astronautics, 2013, 34(10):1295-1302(in Chinese)
[4] 徐立新,强文义,王玉琛,等. 发电用重型燃气轮机的模糊自适应控制[J]. 哈尔滨工程大学学报,2005,26(2):156-160 Xu Lixin, Qiang Wenyi, Wang Yuchen, et al. Adaptive Fuzzy Control for Heavy Single Shift Gas Turbine[J]. Journal of Harbin Engineering University, 2005, 26(2):156-160(in Chinese)
[5] 侯忠生. 非参数模型及其自适应控制理论[M]. 北京:科学出版社, 1999 Hou Zhongsheng. The Nonparametric Model and the Theory of Adaptive Control[M]. Beijing, Science Press, 1999(in Chinese)
[6] 范永胜, 徐治皋, 陈来九. 基于动态特性机理分析的锅炉过热汽温自适应模糊控制系统研究[J]. 中国电机工程学报, 1997, 17(1):23-28 Fan Yongsheng, Xu Zhigao, Chen Laijiu. Study of Adaptive Fuzzy Control of Boiler Superheated Steam Temperature Based on Dynamic Mechanism Analysis[J]. Proceeding of the CSEE,1997, 17(1):23-28(in Chinese)
[7] 吴大方,高镇同,王永海. 模糊控制在导弹瞬态气动热流试验中的研究[J]. 北京航空航天大学学报, 2002, 28(6):682-684 Wu Dafang, Gao Zhentong, Wang Yonghai. Experimental Study on Fuzzy Control of Transient Aerodynamic Heat Flow of Missile[J]. Journal of Beijing University of Aeronautics and Astronautics, 2002,28(6):682-684(in Chinese)
[8] 张伟,王乐善,王梦魁. 气动加热模拟试验加热系统控制研究[J]. 强度与环境,2005,32(3):45-52 Zhang Wei, Wang Leshan, Wang Mengkui. Research on Control of Heating System for Aerodynamic Heating Simulation Test[J]. Structure & Environment Engineering, 2005,32(3):45-52(in Chinese)
[9] 侯玉柱,郑京良,董威. 高超声速飞行器瞬态热试验[J]. 航空动力学报,2010,25(2):343-347 Hou Yuzhu, Zheng Jingliang, Dong Wei. Transient Test of Aerodynamic Heating for Hypersonic Vehicle[J]. Journal of Aerospace Power, 2010, 25(2):343-347(in Chinese)
[10] Arimoto S, Kawamura S, Miyazaki F. Bettering Operation of Robotics by Learning[J]. Journal of Robotic System, 1984, 12(2):123-140
[11] Oustaloup A, Moreau X, Nouillant M. The Crone Suspension[J]. Control Engineering Practice, 1996, 4(8):1101-1108
[12] Tepljakov A, Petlenkov E, Belikov J, et al. Design and Implementation of Fractional-Order PID Controllers for a Fluid Tank System[C]//American Control Conference, Washington, DC, 2013:1777-1782
[13] Li Yan, Chen Yangquan, Ahn H S, et al. A Survey on Fractional Order Iterative Learning Control[J]. Journal of Optimization Theory and Applications, 2013, 156(1):127-140
[14] Li Yan, Chen Yangquan, Ahn H S. Fractional Order Iterative Learning Control for Fractional Order Linear Systems[J]. Asian Journal of Control, 2011, 13(1):54-63
[15] Chen Yangquan, Moore K L. On Dα-type Iterative Learning Control[C]//Proceedings of IEEE Conference on Decision and Control, 2001:4451-4456
[16] Tepljakov A, Petlenkov E, Belikov J, et al. Design and Implementation of Fractional-Order PID Controllers for a Fluid Tank System[C]//American Control Conference, Washington, DC, 2013:1777-1782
[19] Merrikh-Bayat F, Mirebrahimi N, Khalili M R. Discrete-Time Fractional-Order PID Controller:Definition, Tuning, Digital Realization and some Applications[J]. International Journal of Control Automation and System, 2015, 13(1):81-90