论文:2016,Vol:34,Issue(6):996-1003
引用本文:
汤伟江, 刘卫东, 陈刚, 杨贺然, 张建军. 水下通信用光缆线包缠绕力学建模及仿真[J]. 西北工业大学学报
Tang Weijiang, Liu Weidong, Chen Gang, Yang Heran, Zhang Jianjun. Winding Mechanical Modeling and Simulation of Fiber Optic Cable Spool for Underwater Communication[J]. Northwestern polytechnical university

水下通信用光缆线包缠绕力学建模及仿真
汤伟江1,2, 刘卫东1,3, 陈刚2, 杨贺然2, 张建军1
1. 西北工业大学 航海学院, 陕西 西安 710072;
2. 中国船舶重工集团公司第705研究所, 陕西 西安 710077;
3. 西北工业大学 水下信息与控制重点实验室, 陕西 西安 710072
摘要:
因电磁波无法在水中传播,水下大容量长距离通信仅能依靠光缆等有线通信方式。对于水下航行器等需随航行体运动实时布放光缆以建立动态通信信道的应用场合,光缆线包缠绕工艺及缠绕机构的优化设计,对减小断线概率、提高水下通信的可靠性显得尤为重要。在对光缆缠绕过程及端板力学分析的基础上,提出一种以各层光缆径向变形和轴向变形为增量的逐层分析方法,建立了水下通信用光缆线包缠绕力学模型。该模型揭示了缠绕过程光缆线包内张力分布及端板变形的内在规律,以实际光缆线包结构参数和缠绕工艺参数对光缆线包内部应变、光缆层压强以及端板变形进行仿真分析,仿真结果与光缆线包缠绕过程应变实测数据符合性好。
关键词:    水下航行器    光缆线包    缠绕力学模型    光缆轴向应变    端板变形   
Winding Mechanical Modeling and Simulation of Fiber Optic Cable Spool for Underwater Communication
Tang Weijiang1,2, Liu Weidong1,3, Chen Gang2, Yang Heran2, Zhang Jianjun1
1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China;
2. The 705 Research Institute, China Shipbuilding Industry Corporation, Xi'an 710077, China;
3. Science and Technology on Underwater Information and Control Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Underwater high-capacity and long-distance communication relies on fiber optic cable and other wired communication methods, because electromagnetic wave can't propagate in water. Thus, optimizing the design of winding technology and winding mechanism is very important for reducing the probability of communication failure and improving the reliability of underwater communication, especially in the field of underwater vehicles, which releasing the fiber optic cable during the movement of vehicles. A layer-by-layer analysis method which adopts the radial deformation and axial deformation of each cable layer as increments is proposed, and a winding mechanical model of fiber optic cable spool is established on the basis of the mechanical analysis of the cable winding process and the end plate. The model reveals the inherent law of inner tension distribution and end-plate deformation in winding process. The simulations of inner strain and layer pressure and end-plate deformation are carried out, which adopt the parameters of spool structure and winding technology. It is shown that the simulation results of inner strain are consistent with experimental data through comparative analyses.
Key words:    underwater vehicle    fiber optic cable spool    winding mechanical model    cable axial strain    end-plate deformation   
收稿日期: 2016-04-18     修回日期:
DOI:
基金项目: 国家自然科学基金(61473224)资助
通讯作者:     Email:
作者简介: 汤伟江(1979-),西北工业大学博士研究生,主要从事水下有线通信技术研究。
相关功能
PDF(1351KB) Free
打印本文
把本文推荐给朋友
作者相关文章
汤伟江  在本刊中的所有文章
刘卫东  在本刊中的所有文章
陈刚  在本刊中的所有文章
杨贺然  在本刊中的所有文章
张建军  在本刊中的所有文章

参考文献:
[1] 王宝珠,邓宏林,李小瑞,等. 制导光缆中光纤寿命预期[J]. 应用光学,2006,26(6):41-45 Wang Baozhu, Deng Honglin, Li Xiaorui, et al. Lifetime Prediction for the Optical Fiber in Guidance Optical Fiber[J]. Journal of Applied Optics,2006,26(6):41-45(in Chinese)
[2] 邢静忠,陈利,孙颖. 纤维缠绕厚壁柱形压力容器的应力和变形[J]. 固体火箭技术,2009,32(6):680-689 Xing Jingzhong, Chen Li, Sun Ying. Stress and Deformation of Filament-Wound Thick-Wall Cylinder Pressure Vessels[J]. Journal of Solid Rocket Technology, 2009, 32(6):680-689(in Chinese)
[3] Menshykova M, Guz I A. Stress Analysis of Layered Thick-Walled Composite Pipes Subjected To Bending Loading[J]. International Journal of Mechanical Sciences,2014,88:289-299
[4] Zu Lei, Wang Jihui, Li Shuxin. Analysis of Multi-Layered Thick-Walled Filament Wound Hydrogen Storage Vessels[J]. International Journal of Hydrogen Energy, 2014, 39:21083-21096
[5] Xing Jingzhong, Geng Pei, Yang Tao. Stress and Deformation of Multiple Winding Angle Hybrid Filament-Wound Thick Cylinder under Axial Loading and Internal And External Pressure[J]. Composite Structures,2015,131:868-877
[6] 刘成旭,邢静忠,陈利,等. 柔性厚壁筒环向缠绕张力分析与设计[J]. 固体火箭技术,2013,36(2):261-265 Liu Chengxu, Xing Jingzhong, Chen Li, et al. Analysis of Residual Winding Tension and Design of Winding Tension for Loop Winding on Flexible Cylinder[J]. Journal of Solid Rocket Technology,2013,36(2):261-265(in Chinese)
[7] 梁清波,邢静忠,杨涛. 柱形缠绕件的环向缠绕张力设计的理论研究及其数值模拟[J]. 固体火箭技术,2013,36(6):799-835 Liang Qingbo, Xing Jingzhong, Yang Tao. Theoretical Research And Numerical Simulation of Winding Tension Design of Hoop Winding on Cylindrical Mandrel[J]. Journal of Solid Rocket Technology,2013,36(6):799-835(in Chinese)
[8] 邢静忠,梁清波,刘成旭,等. 圆柱形厚壁缠绕件的环向缠绕张力分析的逐层叠加法[J]. 固体火箭技术,2015,38(2):261-272 Xing Jingzhong, Liang Qingbo, Liu Chengxu, et al. Analysis of Winding Tension for Hoop Winding on Deformable Thick-Walled Cylinder with Superposition by Layers[J]. Journal of Solid Rocket Technology,2015,38(2):261-272(in Chinese)
[9] 胡勇,许学三,胡吉全. 基于MATLAB的双折线式多层缠绕卷筒的受力分析研究[J]. 武汉理工大学学报(交通科学与工程版),2015,39(2):297-300 Hu Yong, Xu Xuesan, Hu Jiquan. Force Analysis of Lebus Drum Wound by Multi-Layer Wire Rope Based on MATLAB[J]. Journal of Wuhan University of Technology(Transportation Science & Engineering),2015,39(2):297-300(in Chinese)
[10] 马成举,任立勇,唐峰,等. 基于分布式光纤Bragg光栅传感技术的光缆卷盘静态压力研究[J]. 物理学报,2012,61(5):1-6 Mu Chengju, Ren Liyong, Tang Feng, et al. Study on Static Pressure of Fiber Cable Spool Based on Distributed Fiber Bragg Grating Sensing Technology[J]. Acta Physica Sinica,2012,61(5):1-6(in Chinese)
[11] S.铁摩辛柯,S. 沃诺斯基.板壳理论[M]. 北京:科学出版社,1977:55 S.Timoshenko, S. Woinowsky-Krieger. Theory of Plates and Shells[M]. Beijing, Science Press,1977:55(in Chinese)