论文:2016,Vol:34,Issue(5):805-811
引用本文:
杨文骏, 张科, 张明环, 王靖宇. 基于ESO的高超声速飞行器非线性动态逆控制[J]. 西北工业大学学报
Yang Wenjun, Zhang Ke, Zhang Minghuan, Wang Jingyu. ESO Based Nonlinear Dynamic Inversion Control for Hypersonic Flight Vehicle[J]. Northwestern polytechnical university

基于ESO的高超声速飞行器非线性动态逆控制
杨文骏1,2, 张科1,2, 张明环1,2, 王靖宇1,2
1. 航天飞行动力学技术重点实验室, 陕西 西安 710072;
2. 西北工业大学 航天学院, 陕西 西安 710072
摘要:
以高超声速飞行器(HFV)纵向运动模型为研究对象,针对其巡航飞行中存在的参数不确定性和外界干扰问题,提出了一种基于扩张状态观测器(ESO)的非线性动态逆(NDI)控制方法。采用精确反馈线性化方法实现了HFV速度与高度通道的解耦,并设计了动态逆控制器;在此基础上为系统的速度和高度通道设计了二阶ESO,实现对等效扰动的精确估计,并在控制器中进行补偿,从而实现HFV对高度和速度指令的精确跟踪,保证控制精度的同时大幅提升了系统的扰动抑制能力。仿真结果表明,相比于滑模控制,文中所设计方法具有更快的响应速度和更好的跟踪精度,体现出该方法的良好控制性能和较强的鲁棒性。
关键词:    高超声速飞行器    非线性动态逆    扩张状态观测器    扰动抑制    鲁棒性   
ESO Based Nonlinear Dynamic Inversion Control for Hypersonic Flight Vehicle
Yang Wenjun1,2, Zhang Ke1,2, Zhang Minghuan1,2, Wang Jingyu1,2
1. National Key Laboratory of Aerospace Flight Dynamics, Xi'an 710072, China;
2. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In the presence of parametric uncertainties and external disturbance for the longitudinal model of a Hypersonic Flight Vehicle (HFV), a scheme of Extended State Observer (ESO) based Nonlinear Dynamic Inversion (NDI) control is exploited in this paper. The decoupling of velocity and altitude is realized by adopting Exact Feedback Linearization (EFL) technique, and then the NDI controller is designed. In order to estimate the equivalent disturbance precisely, a second-order ESO is designed for the velocity subsystem and altitude subsystem. The estimated equivalent disturbances values are used as a compensation in NDI controller. Hence, the precise reference command tracking of velocity and altitude is achieved, which enormously improves the ability of disturbance rejection while the control accuracy is ensured. The simulation results and their analysis demonstrate that, comparing with Sliding Mode Control, the proposed methodology in this paper has better response speed and tracking accuracy which indicates good control performance and robustness of the method.
Key words:    hypersonic flight vehicle    nonlinear dynamic inversion    extended state observer    disturbance rejection    robustness   
收稿日期: 2016-04-12     修回日期:
DOI:
基金项目: 国家自然科学基金(61174204、61101191、61502391)、航天支撑基金(N2015KC0121)及航天飞行动力学技术重点实验室开放基金资助
通讯作者:     Email:
作者简介: 杨文骏(1987-),西北工业大学博士研究生,主要从事飞行器导航、制导与控制的研究。
相关功能
PDF(1367KB) Free
打印本文
把本文推荐给朋友
作者相关文章
杨文骏  在本刊中的所有文章
张科  在本刊中的所有文章
张明环  在本刊中的所有文章
王靖宇  在本刊中的所有文章

参考文献:
[1] 孙长银, 穆朝絮, 余瑶. 近空间高超声速飞行器控制的几个科学问题研究[J]. 自动化学报, 2013(11):1901-1913 Sun Changyin, Mu Chaoxu, Yu Yao. Some Control Problems for Near Space Hypersonic Vehicles[J]. Acta Automatica Sinica, 2013(11):1901-1913(in Chinese)
[2] Wang N, Wu H, Guo L. Coupling-Observer-Based Nonlinear Control for Flexible Air-Breathing Hypersonic Vehicles[J]. Nonlinear Dynamics, 2014, 78(3):2141-2159
[3] 葛致磊,宋波涛,郭锐. 基于扰动预测的高超声速飞行器高精度姿态控制器设计[J]. 西北工业大学学报, 2015, 33(1):123-128 Ge Zhilei, Song Botao, Guo Rui. High-Precision Attitude Control Design for a Hypersonic Vehicle Based on Disturbance Prediction[J]. Jounal of Northwestern Polytechnical University, 2015, 33(1):123-128(in Chinese)
[4] 王婕. 弹性高超声速飞行器跟踪问题控制方法研究[D]. 天津:天津大学, 2014 Wang Jie. Research on Control Methods for Tracking Problem of a Flexible Hypersonic Vehicle[D]. Tianjin, Tianjin University, 2014(in Chinese)
[5] Zhang Y, Li R, Xue T, et al. An Analysis of the Stability and Chattering Reduction of High-Order Sliding Mode Tracking Control for a Hypersonic Vehicle[J]. Information Sciences, 2016, 348:25-48
[6] Xu B, Zhang Q, Pan Y. Neural Network Based Dynamic Surface Control of Hypersonic Flight Dynamics Using Small-Gain Theorem[J]. Neurocomputing, 2016, 173:690-699
[7] Wang J, Wu Y, Dong X. Recursive Terminal Sliding Mode Control for Hypersonic Flight Vehicle with Sliding Mode Disturbance Observer[J]. Nonlinear Dynamics, 2015, 81(3):1489-1510
[8] Wang J, Zong Q, Su R, et al. Continuous High Order Sliding Mode Controller Design for a Flexible Air-Breathing Hypersonic Vehicle[J]. ISA Transactions, 2014, 53(3):690-698
[9] Fiorentini L, Serrani A. Adaptive Restricted Trajectory Tracking for a Non-Minimum Phase Hypersonic Vehicle Model[J]. Automatica, 2012, 48(7):1248-1261
[10] Shao Xingling, Wang Honglun. Sliding Mode Based Trajectory Linearization Control for Hypersonic Reentry Vehicle via Extended Disturbance Observer[J]. ISA Transactions, 2014, 53(6):1771-1786
[11] Bialy B, Klotz J, Wiuard Curtis J. An Adaptive Backstepping Controller for a Hypersonic Air-Breathing Missile[C]//AIAA Guidance, Navigation, and Control Conference, Minneapolis, Minnesota, 2012
[12] 韩京清. 自抗扰控制技术——估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008 Han Jingqing. Active Disturbance Rejection Control Technique——the Technique for Estimating and Compensating the Uncertainties[M]. Beijing, National Defense Industry Press, 2008(in Chinese)
[13] Xu H, Mirmirani M D, Ioannou P A. Adaptive Sliding Mode Control Design for a Hypersonic Flight Vehicle[J]. Journal of Guidance, Control, and Dynamics. 2004, 27(5):829-838
[14] 李慧峰. 高超声速飞行器制导与控制技术[M]. 北京:中国宇航出版社, 2012 Li Huifeng. Hypersonic Flight Vehicle Guidance and Control Techniques[M]. Beijing, China Astronautic Publishing House, 2012(in Chinese)
相关文献:
1.耿峰, 祝小平, 周洲, 孟俊生.一种有效的高速攻击型无人机二自由度PID控制[J]. 西北工业大学学报, 2013,31(1): 1-7