论文:2016,Vol:34,Issue(2):281-286
引用本文:
殷春武, 侯明善, 褚渊博, 余英. 物理约束下的反演自适应姿态控制[J]. 西北工业大学学报
Yin Chunwu, Hou Mingshan, Chu Yuanbo, Yu Ying. Backstepping Adaptive Attitude Control with Physical Constraints[J]. Northwestern polytechnical university

物理约束下的反演自适应姿态控制
殷春武, 侯明善, 褚渊博, 余英
西北工业大学 自动化学院, 陕西 西安 710129
摘要:
针对存在参数摄动、外部干扰和物理约束的航天器姿态控制问题,设计了一种鲁棒姿态控制器。基于反演控制策略,先对外环系统设计了有界虚拟角速度。接着,对显式存在控制饱和约束的姿态动力学系统进行变换,分离出存在摄动和干扰的不确定项,并采用自适应更新律估计复合不确定项;再基于障碍Lyapunov函数设计姿态控制器,将实际角速度与虚拟角速度的跟踪误差,限制在预设有界范围内,最终在实现全局渐近稳定的同时,满足了角速度有界的约束。最后数值仿真验证了姿态控制器的强鲁棒性,低耗能性和航天器的高飞行品质特性。
关键词:    姿态控制    反演控制    鲁棒控制    控制饱和    角速度   
Backstepping Adaptive Attitude Control with Physical Constraints
Yin Chunwu, Hou Mingshan, Chu Yuanbo, Yu Ying
Department of Automatic Control, Northwestern Polytechnical University, Xi'an 710129, China
Abstract:
A novel robust attitude controller is designed for spacecraft stability control in the presence of uncertain parameter perturbation, external disturbance and physical constraints. Based on backstepping control method, a bounded virtual angular velocity is designed for kinematics system firstly. Secondly, the dynamical system with control saturation constraint is converted into a normal pattern. An adaptive update law is designed to estimate the uncertain parts that consist of the perturbation and disturbance of dynamical system. Under the robust attitude controller, the tracking error of the real and the bounded virtual angular velocity is limited according to the preset range; then,the global asymptotic stability of close-loop system and the boundness of angular velocity are guaranteed. Finally numerical simulation verifies the robustness, low energy consumption and the high flying quality characteristics of spacecraft.
Key words:    angular velocity    asymptotic stability    attitude control    backstepping    bandwidth    closed loop systems    computer simulation    controllers    dynamical systems    design    energy dissipation    functions    gyroscopes    kinematics    Lyapunov functions    matrix algebra    robust control    robustness(control systems)    spacecraft    uncertain systems    backstepping control    control saturation    disturbance    perturbation   
收稿日期: 2015-10-20     修回日期:
DOI:
通讯作者:     Email:
作者简介: 殷春武(1982-),西北工业大学博士研究生、讲师,主要从事导航、制导与控制的研究。
相关功能
PDF(1251KB) Free
打印本文
把本文推荐给朋友
作者相关文章
殷春武  在本刊中的所有文章
侯明善  在本刊中的所有文章
褚渊博  在本刊中的所有文章
余英  在本刊中的所有文章

参考文献:
[1] Davila J. Attitude Control of Spacecraft using Robust Backstepping Controller Based on High Order Sliding[C]//AIAA Guidance, Navigation, and Control (GNC) Conference,Boston, MA, 2013,:19-22
[2] 刘敏,徐世杰,韩潮. 挠性航天器的退步直接自适应姿态跟踪控制[J]. 航空学报,2012,33(9):1697-1705 Liu M, Xu S J, Han C. Direct Adaptive Attitude Tracking Control of Flexible Spacecraft Based on Backstepping Method[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1697-1705(in Chinese)
[3] Yeh F K. Sliding-Mode Adaptive Attitude Controller Design for Spacecrafts with Thrusters[J]. IET Control Theory and Applications, 2010, 4(7):1254-1264
[4] Zhao L, Jia Y M. Finit-Time Attitude Tracking Control for a Rigid Spacecraft Using Time-Varying Terminal Sliding Mode Techniques[J]. International Journal of Control, 2015, 88(6):1150-1162
[5] Lu K, Xia Y. Adaptive Attitude Tracking Control for Rigid Spacecraft with Finite-Time Convergence[J]. Automatica, 2013, 49(12):3591-3599
[6] Thakur D, Srikant S, Akella M R. Adaptive Attitude-Tracking Control of Spacecraft with Uncertain Time-Varying Inertia Parameters[J]. Journal of Guidance, Control, and Dynamics, 2014(11):1-12
[7] Zhong C, Guo Y, Wang L. Fuzzy Active Disturbance Rejection Attitude Control of Spacecraft with Unknown Disturbance and Parametric Uncertainty[J]. International Journal of Control and Automation, 2015, 8(8):233-242
[8] Zou A M, Kumar K D, Zeng G H. Quaternion-Based Adaptive Output Feedback Attitude Control of Spacecraft Using Chebyshev Neural Networks[J]. IEEE Trans on Neural Networks, 2010, 21(9):1457-1471
[9] Forbes J R. Attitude Control with Active Actuator Saturation Prevention[J]. Acta Astronautica, 2015,107:187-195
[10] Yuan R. Robust Adaptive Neural Network Control for a Class of Uncertain Nonlinear Systems with Actuator Amplitude and Rate Saturations[J]. Neuro Computing, 2014(125):72-80
[11] Hu Q. Robust Adaptive Backstepping Attitude and Vibration Control with L-2 Gain Performance for Flexible Spacecraft under Angular Velocity Constraint[J]. Journal of Sound and Vibration, 2009, 327(3):285-298
[12] Singla P, Singh T. An Adaptive Attitude Control Formulation under Angular Velocity Constraints[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, 2008:67-79
[13] Hu Q, Li B, Zhang Y. Robust Attitude Control Design for Spacecraft under Assigned Velocity and Control Constraints[J]. ISA Transactions, 2013, 52(4):480-493
[14] Zheng Z, Song S. Autonomous Attitude Coordinated Control for Spacecraft Formation with Input Constraint, Model Uncertainties, and External Disturbances[J]. Chinese Journal of Aeronautics, 2014, 27(3):602-612
[15] Ahmad B Y, Daniele M, James D T, John L J. Attitude Error Kinematics[J]. Journal of Guidance, Control and Dynamics, 2014(11):330-335
[16] Lu K F, Xia Y Q, Fu MY. Controller Design for Rigid Spacecraft Attitude Tracking with Actuator Saturation[J]. Information Scincese, 2013(220):343-366
[17] Tee K P, Ge S S, Tay E H. Barrier Lyapunov Functions for the Control of Output-Constrained Nonlinear Systems[J]. Automatica, 2009, 45(4):918-927
[18] Xu J X, Xu J. State-Constrained Iterative Learning Control for a Class of MIMO Systems[J]. IEEE Trans on Automatic Control, 2013, 58(5):1322-1327