论文:2016,Vol:34,Issue(1):1-10
引用本文:
叶坤, 叶正寅, 屈展. 高超声速热气动弹性中结构热边界影响研究[J]. 西北工业大学学报
Ye Kun, Ye Zhengyin, Qu Zhan. Effect of Structural Thermal Boundary on Areothermoelasticity forHypersonic Vehicles[J]. Northwestern polytechnical university

高超声速热气动弹性中结构热边界影响研究
叶坤, 叶正寅, 屈展
西北工业大学 航空学院, 陕西 西安 710072
摘要:
基于分层求解思路研究结构热边界对高超声速飞行器全动舵面和翼面结构热气动弹性特性的影响。首先,基于CFD求解N-S方程得到热环境,在此基础上进行结构的瞬态热传导分析,进而分析结构由于温度梯度产生的热应力和温度对材料属性的影响下的模态固有特性,然后将结构振型插值到气动网格上,最后,通过求解Euler方程得到流动参数,基于CFD的当地流活塞理论计算气动力,在状态空间中进行了气动弹性分析。通过对4组结构模型进行热气动弹性分析,研究了结构热边界对舵面和翼面热气动弹性的影响,结果表明:对全动舵面而言,结构热边界首先会影响舵轴处结构的热传导过程及温度分布,进而对结构固有频率、频率间距、颤振速度以及颤振频率的变化产生的影响达到了16%。对翼面而言,结构热边界对结构固有频率、频率间距、颤振速度以及颤振频率的变化产生的影响约为1%。因此,工程实际当中,进行热气动弹性分析时应采用合理的结构热边界。
关键词:    高超声速    热气动弹性    结构热边界    气动加热    当地流活塞理论   
Effect of Structural Thermal Boundary on Areothermoelasticity forHypersonic Vehicles
Ye Kun, Ye Zhengyin, Qu Zhan
College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The effect of structural thermal boundary on aerothermoelasticity of hypersonic all-movable control surface/wing is studied on the basis of hierarchical solution process. On the basis of CFD technology, Navier-Stokes equation is solved to get the thermal environment. And then transient thermal conduction of structure is analyzed. Then structural modal is analyzed under the effect of structure's thermal stress caused by temperature gradient and material property decrease caused by high temperature, then structural mode is interpolated to the aerodynamic grid; Finally, Euler equation is solved to get flow parameter, and based on CFD local piston theory, aerothermoelasticity is analyzed in state space. Through analyzing aerothermoelasticity of four different structural models, the effect of the structural thermal boundary on aerothermoelasticity of all-movable control surface/wing is analyzed. The results show that: for the control surface in this paper, the structural thermal boundary would firstly affect the heat transfer process and temperature distribution of shaft structure. The effect on the variation of the natural frequency, frequency spacing, flutter velocity and flutter frequency is about 16%. For the wing in this paper, The effect on the variation of the natural frequency, frequency spacing, flutter velocity and flutter frequency is about 1%. Therefore, in practical engineering, reasonable thermal boundary should be used while analyzing aerothermoelasticity.
Key words:    aerodynamic    configurations    aerodynamic heating    aeroelasticity    angle of attack    boundary conditions    calculations    computational fluid dynamics    control surfaces    Euler equations    flow fields    flow velocity    flowcharting    flutter(aerodynamics)    heat transfer    hypersonic vehicles    materials properties    mathematical models    matrix algebra    mesh generation    modal analysis    Navier Stokes equatons    Prandtl number    radial basis function networks    structural dynamics    temperature distribution    turbulence models    vectors    velocity    wings    aerothermoelasticity    flutter frequency    flutter velocity    local flow piston theory    structural thermal boundary   
收稿日期: 2015-09-29     修回日期:
DOI:
基金项目: 国家自然科学基金(91216202)资助
通讯作者:     Email:
作者简介: 叶坤(1987-),西北工业大学博士研究生,主要从事高超声速热气动弹性研究。
相关功能
PDF(3769KB) Free
打印本文
把本文推荐给朋友
作者相关文章
叶坤  在本刊中的所有文章
叶正寅  在本刊中的所有文章
屈展  在本刊中的所有文章

参考文献:
[1] Klock R J, Cesnik C E S. Aerothermoelastic Simulation of Air-Breathing Hypersonic Vehicles[R]. AIAA-2014-0149
[2] 杨超, 许赟, 谢长川. 高超声速气动弹性力学综述[J]. 航空学报,2010, 31(1):1-11 Yang Chao, Xu Yun, Xie Changchuan. Review of Studies on Aeroelasticity of Hypersonic Vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese)
[3] McNamara J J, and Friedmann P P, Aeroelastic and Aerothermoelastic Analysis in Hypersonic Flow: Past, Present, and Future[J]. AIAA Journal, 2011, 49(6): 1089-1122
[4] Lamorte N, Friedmann P P. Aerothermoelastic and Aeroelastic Studies of Hypersonic Vehicles Using CFD[R]. AIAA-2013-1591
[5] McNamara J J, Friedmann P P. Three-Dimensional Aeroelastic and Aerothermoelastic Behavior in Hypersonic flow[R]. AIAA-2005-2175
[6] Culler A J, McNamara J J. Studies on Fluid-Thermal-Structural Coupling for Aerothermoelasticity in Hypersonic Flow[J]. AIAA Journal, 2010, 48(8): 1721-1738
[7] Lamorte N, Friedmann P P. Aerothermoelastic and Aeroelastic Studies of Hypersonic Vehicles using CFD[R]. AIAA-2013-1591
[8] Crowel A R, McNamara J J, Model Reduction of Computational Aerothermodynamics for Hypersonic Aerothermoelasticity[J]. AIAA Journal,2012,50(1): 74-84
[9] Falkiewicz N, Cesnik C E S, Crowell A R, McNamara, J J. Reduced-Order Aerothermoelastic Framework for Hypersonic Vehicle Control Simulation[J]. AIAA Journal,2011,49(8): 1625-1646
[10] Lamorte N, Friedmann P P, Glaz B, Culler A J, Crowell A R, McNamara J J. Uncertainty Propagation in Hypersonic Aerothermoelastic Analysis[J]. Journal of Aircraft, 2014, 51(1): 192-203
[11] 杨超, 李国曙, 万志强. 气动热-气动弹性双向耦合的高超声速壁板颤振分析方法[J]. 中国科学: 技术科学, 2012, 42(4):369-377 Yang Chao, Li Guoshu, Wang Zhiqiang. Aerothermal-Aeroelastic Two-Way Coupling Method for Hypersonic Curved Panel Flutter[J]. Scientia Sinica Technologica, 2012,42(4): 369-377 (in Chinese)
[12] 吴志刚,惠俊鹏,杨超. 高超声速下翼面的热颤振工程分析[J]. 北京航空航天大学学报, 2005, 3(3): 270-273 Wu Zhigang, Hui Junpeng, Yang Chao. Hypersonic Aerothermoelastic Analysis of Wings[J]. Journal of Beijing University of Aeronautics and Astronautics, 2005, 3(3): 270-273 (in Chinese)
[13] 杨享文, 武洁, 叶坤, 叶正寅. 高超声速全动舵面的热气动弹性研究[J]. 力学学报, 2014,46(4): 626-630 Yang Xiangwen, Wu Jie, Ye Kun, Ye Zhengyin. Study on Aerothermoelasticity of a Hypersonic All-Movable Control Surface[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(4): 626-630 (in Chinese)
[14] 史晓鸣, 杨炳渊. 气动加热环境下大攻角翼面超音速颤振分析[J]. 强度与环境, 2008,35(6):6-13 Shi Xiaoming, Yang Bingyuan. Analysis of Supersonic Flutter of the Wing With High Angle of Attack With Aero-Dynamics Heating[J]. Structure&Environment Engineering, 2008, 35(6): 6-13 (in Chinese)
[15] 杨炳渊,宋伟力. 应用当地流活塞理论的大攻角升力 面颤振气动力表达式[J]. 上海力学, 1999, 20(3): 223-228 Yang Bingyuan, Song Weili. Expressions about Aerodynamic Forces of Flutter for Wing with High Angle of Attack by Local Flow Piston Theory[J]. Shanghai Journal of Mechanics, 1999, 20(3): 223-228 (in Chinese)
[16] 张伟伟,夏巍,叶正寅. 一种高超音速热气动弹性数值研究方法[J]. 工程力学, 2006,23(2):41-46 Zhang Weiwei, Xia Wei, Ye Zhengyin. A Numerical Method for Hypersonic Aerothermoelasticity[J]. Engineering Mechanice, 2006, 23(2): 41-46 (in Chinese)
[17] 陈文俊. 几种气动热弹性设计方法[J]. 战术导弹技术, 2001(5):31-39 Chen Wenjun. The Designing Methods for Aerothermoelascity[J]. Tactical Missile Technology, 2001(5): 31-39 (in Chinese)
[18] 李增文,林立军,关世义. 超声速全动舵面热颤振特性分析[J]. 战术导弹技术, 2008(5): 36-39 Li Zengwei, Lin Lijun, Guan Shiyi. Research on the Thermal Flutter Characteristics of Hypersonic All-Moved Wing[J]. Tactical Missile Technology, 2008(5): 36-39 (in Chinese)
[19] Kader B A. Temperature and Concentration Profiles in Fully Turbulent Boundary Layers[J]. International Journal of Heat and Mass Transfer, 1981, 24(9): 1541-1544
[20] Zhang Weiwei, Ye Zhengyin, Zhang Chengan, et al. Analysis of Supersonic Aeroelastic Problem Based on Local Piston Theory Method[J]. AIAA Journal, 2009, 47(10): 2321-2328
[21] 张伟伟,夏巍,叶正寅.一种高超音速热气动弹性数值研究方法[J]. 工程力学, 2006,23(2):41-46 Zhang Weiwei, Xia Wei, Ye Zhengyin. A Numerical Method for Hypersonic Aerothermoelasticity[J]. Engineering Mechanice, 2006, 23(2): 41-46 (in Chinese)
相关文献:
1.陈浩, 徐敏, 蔡天星.高超声速机翼瞬态气动加热下热颤振分析[J]. 西北工业大学学报, 2012,30(6): 898-904