论文:2015,Vol:33,Issue(2):191-196
引用本文:
宋超, 杨旭东, 朱敏, 宋文萍. 应用离散型协同射流的翼型增升减阻研究[J]. 西北工业大学学报
Song Chao, Yang Xudong, Zhu Min, Song Wenping. Investigating Lift Increase and Drag Reduction for Airfoils Using Discrete CFJ (Co-Flow Jet)[J]. Northwestern polytechnical university

应用离散型协同射流的翼型增升减阻研究
宋超, 杨旭东, 朱敏, 宋文萍
西北工业大学翼型叶栅国家重点实验室, 陕西西安 710072
摘要:
连续型和离散型协同射流是一种新型的翼型近壁面流动控制技术,相比之下,离散型能够更为高效地对流动进行控制。为探究离散型协同射流能耗更低、效率更高的原因,通过数值模拟方法重点研究了施加离散型协同射流的翼型流动控制效应与规律。计算结果表明在相同喷口动量系数下,与连续型相比,离散型最大升力系数提高9.2%,阻力极大减小;消耗相同功率时,离散型减阻效果明显高于连续型,零度迎角时阻力约小35%,翼型升阻特性提升更加显著。对流场的详细分析表明,离散型协同射流同时在流向和展向产生相干涡结构,使高速度的射流与主流以及边界层充分混合,因此离散型协同射流具有更好的翼型增升减阻效果和更高的能量利用率。
关键词:    流动控制    减阻    増升    协同射流    离散型协同射流   
Investigating Lift Increase and Drag Reduction for Airfoils Using Discrete CFJ (Co-Flow Jet)
Song Chao, Yang Xudong, Zhu Min, Song Wenping
National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
Continuous Co-Flow Jet (CCFJ) and Discrete Co-Flow Jet (DCFJ) are new near-the-wall flow control methods for airfoils and compared with CCFJ, DCFJ is more efficient. We mainly focus on flow control effect and mechanism of DCFJ using numerical simulation. For the same jet momentum coefficient, DCFJ airfoil can achieve up to a 9.2% increase of maximum lift and simultaneously reduce aerodynamic drag. For the same power consumption, DCFJ is more striking in drag reduction. The drag is reduced 35% compared with CCFJ at zero angle of attack. The aerodynamic performance of airfoil is enhanced significantly. Simulation results and their analysis indicate preliminarily that a DCFJ airfoil generates both streamwise and spanwise vortex structures to mix the high speed jet with main flow and boundary layer thoroughly. Because of this mixing, DCFJ is highly efficient and more effective for increasing lift and reducing drag.
Key words:    flow control    drag reduction    lift enhancement    co-flow jet    discrete CFJ   
收稿日期: 2014-09-30     修回日期:
DOI:
基金项目: 中央高校基本科研业务费专项资金(310201401、JCQ01017)资助
通讯作者:     Email:
作者简介: 宋超(1990-),西北工业大学博士研究生,主要从事计算流体力学、流动控制及飞行器气动设计研究。
相关功能
PDF(2182KB) Free
打印本文
把本文推荐给朋友
作者相关文章
宋超  在本刊中的所有文章
杨旭东  在本刊中的所有文章
朱敏  在本刊中的所有文章
宋文萍  在本刊中的所有文章

参考文献:
[1] Englar R J. Circulation Control Pneumatic Aerodynamics:Blown Force and Moment Augmentation and Modification:Past, Present and Future[R]. AIAA-2000-2541
[2] Liu Y, Sankar L N, Englar R J, et al. Computational Evaluation of the Steady and Pulsed Jet Effects on the Performance of a Circulation Control Wing Section[R]. AIAA-2004-0056
[3] Heyes A L, Smith D A R. Spatial Perturbation of a Wing-Tip Vortex Using Pulsed Span-Wise Jets[J]. Experiments in Fluids, 2004, 37:120-127
[4] Simpson R G, Ahmed N A, Archer R D. Near Field Study of Vortex Attenuation Using Wing-Tip Blowing[J]. The Aeronautical Journal, 2002, 106(1057):117-120
[5] Mack S, Brehm C, Heine B, et al. Experimental Investigation of Separation and Separation Control on a Laminar Airfoil[R]. AIAA-2008-3766
[6] Han Y O, Leishman J G. Investigation of Helicopter Rotor-Blade-Tip-Vortex Alleviation Using a Slotted Tip[J]. AIAA Journal, 2004, 42(3):524-535
[7] Ari Glezer, Michael Amitay. Synthetic Jets. Annual Review of Fluid Mechanics, 2002, 34:503-529
[8] Holman R, Utturkar Y, Mittal R, et al. Formation Criterion for Synthetic Jets[J]. AIAA Journal, 2005, 43(10):2110-2116
[9] Corke T C, Post M L. Overview of Plasma Flow Control:Concepts, Optimization, and Applications[R]. AIAA-2005-0563
[10] Zha G C, Paxton C. A Novel Airfoil Circulation Augment Flow Control Method Using Co-Flow Jet[R]. AIAA-2004-2208
[11] Zha G C, Carroll B F, Pax ton C, et al. High Performance Airfoil Using Co-Flow Jet Flow Control[R]. AIAA-2005-1260
[12] Zha G C, Gao W. Analysis of Jet Effects on Co-Flow Jet Airfoil Performance with Integrated Propulsion System[R]. AIAA-2006-0102
[13] Zha Gecheng, Wei Gaoy, Craig Paxton. Numerical Simulation of Co-Flow Jet Airfoil Flows[R]. AIAA-2006-1060
[14] Zha Gecheng, Wei Gaoy, Craig D. Numerical Investigations of Co-Flow Jet Airfoil with and without Suction[R]. AIAA-2006-1061
[15] Zha G C, Gao W, Paxton C. Jet Effects on Co-Flow Jet Airfoil Performance[J]. AIAA Journal, 2007, 6(45):1222-1231
[16] Wang B Y, Zha G C. Detached-Eddy Simulation of a Co-Flow Jet Airfoil at High Angle of Attack[R]. AIAA-2009-4015
[17] Dano B P E, Gecheng Zha, Michael Castillo. Experimental Study of Co-Flow Jet Airfoil Performance Enhancement Using Discrete Jets[R]. AIAA-2011-941
[18] Dano B P E, Lefebvre A, Gecheng Zha. Mixing Mechanism of a Discrete Co-Flow Jet Airfoil[R]. AIAA-2011-3097