论文:2015,Vol:33,Issue(3):382-387
引用本文:
康伟, 代向艳, 刘凝. 低速翼型绕流的多模态耦合与流动稳定性研究[J]. 西北工业大学学报
Kang Wei, Dai Xiangyan, Liu Ning. Multi-Modal Interaction and Flow Instability of Flow around an Airfoil at Low Reynolds Number[J]. Northwestern polytechnical university

低速翼型绕流的多模态耦合与流动稳定性研究
康伟1, 代向艳2, 刘凝1
1. 西北工业大学 航天学院, 陕西 西安 710072;
2. 空军工程大学 航空航天工程学院, 陕西 西安 710043
摘要:
采用非线性动力学理论对翼型绕流的多模态耦合机制进行研究,并阐释模态耦合作用与流动稳定性的关系。通过特征线有限元方法对翼型绕流问题进行数值计算,建立非定常流场数据库。为了分析流动稳定性和流动特征,利用本征正交分解提取流场中的特征模态,从而分析翼型绕流非定常流场的特征模态之间的相互作用关系,并给出了非线性流体动力系统中的不同模态作用与流动稳定性的关系。
关键词:    翼型绕流    本征正交分解    非线性动力学    模态耦合    流动稳定性   
Multi-Modal Interaction and Flow Instability of Flow around an Airfoil at Low Reynolds Number
Kang Wei1, Dai Xiangyan2, Liu Ning1
1. College of Astronautics, Northwestern Polytechincal University, Xi'an 710072, China;
2. School of Aeronautics and Astronautics Engineering, Air Force Engineering University, Xi'an 710043, China
Abstract:
Multi-mode interaction mechanism of flow around an airfoil is presented from viewpoint of nonlinear dynamics. The relationship between coupling effect and flow stability is studied. The flow around an airfoil is simulated using characteristics finite element method and then the database of unsteady flow field is established accordingly. In order to analyze flow stability and flow pattern, the dominant modes are extracted with Proper Orthogonal Decomposition. Furthermore, the interaction among the distinct modes of airfoil flow is analyzed, and the relationship between multi-mode interaction effect and flow instability in nonlinear fluid dynamic system is given.
Key words:    airfoils    angle of attack    computer simulation    dynamics    finite element method    flow fields    Hopf bifurcation    Navier-Stokes equations    stability    Taylor series    flow around an airfoil    flow stability    modal interaction    nonlinear dynamics    Proper Orthogonal Decomposition   
收稿日期: 2014-10-09     修回日期:
DOI:
基金项目: 国家自然科学基金(11402212)与中央高校基本科研业务费专项资金(3102014JCQ01002)资助
通讯作者:     Email:
作者简介: 康伟(1983—),西北工业大学讲师,主要从事气动弹性与流动稳定性研究。
相关功能
PDF(2103KB) Free
打印本文
把本文推荐给朋友
作者相关文章
康伟  在本刊中的所有文章
代向艳  在本刊中的所有文章
刘凝  在本刊中的所有文章

参考文献:
[1] Stuart J T. On the Non-Linear Mechanics of Wave Disturbances in Stable and Unstable Parallel Flows Part 1: The Basic Behaviour in Plane Poiseuille Flow[J]. Journal of Fluid Mechanics, 1960, 9(3): 353-370
[2] Sengupta T K, Singh N, Suman V. Dynamical System Approach to Instability of Flow Past a Circular Cylinder[J]. Journal of Fluid Mechanics, 2010, 656(82): 115
[3] Williamson C. Vortex Dynamics in the Cylinder Wake[J]. Annual Review of Fluid Mechanics, 1996, 28(1): 477-539
[4] Barkley D, Henderson R D. Three-Dimensional Floquet Stability Analysis of the Wake of a Circular Cylinder[J]. Journal of Fluid Mechanics, 1996, 322: 215-242
[5] Blackburn H, Henderson R. A Study of Two-Dimensional Flow Past an Oscillating Cylinder[J]. Journal of Fluid Mechanics, 1999, 385(1): 255-286
[6] Govardhan R, Williamson C. Modes of Vortex Formation and Frequency Response of a Freely Vibrating Cylinder[J]. Journal of Fluid Mechanics, 2000, 420(85): 130
[7] Noack B R, Afanasiev K, Morzynski M, et al. A Hierarchy of Low-Dimensional Models for the Transient and Post-Transient Cylinder Wake[J]. Journal of Fluid Mechanics, 2003, 497(1): 335-363
[8] Noack B R, Tadmor G, Morzynski M. Low-Dimensional Models for Feedback flow Control. Part I: Empirical Galerkin Models[R]. AIAA-2004-2408
[9] Sengupta T K, Vijay V, Singh N. Universal Instability Modes in Internal and External Flows[J]. Computers & Fluids, 2011, 40(1): 221-235
[10] Zienkiewicz O, Codina R. A General Algorithm for Compressible and Incompressible Flow——PartⅠ the Split, Characteristic-Based Scheme[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8/9): 869-885
[11] Zienkiewicz O, Morgan K, Sai B, et al. A General Algorithm for Compressible and Incompressible Flow——PartⅡ: Tests on the Explicit Form[J]. International Journal for Numerical Methods in Fluids, 1995, 20(8/9): 887-913
[12] Nithiarasu P. An Efficient Artificial Compressibility (AC) Scheme Based on the Characteristic Based Split (CBS) Method for Incompressible Flows[J]. International Journal for Numerical Methods in Engineering, 2003, 56(13): 1815-1845
[13] 康伟, 张家忠. 翼型局部弹性自激振动的增升减阻效应研究[J]. 西安交通大学学报, 2011(05): 94-101 Kang W, Zhang J Z. Numerical Analysis of Ligt Enhancment and Drag Reduction by Self-Induced Vibration of Localized Elastic Airfoil[J]. Journal of Xi'an Jiaotong University, 2011(05):94-101 (in Chinese)
[14] Kang W, Zhang J Z, Feng P H. Aerodynamic Analysis of a Localized Flexible Airfoil at Low Reynolds Numbers[J]. Communications in Computational Physics, 2012, 11(4): 1300-1310
[15] Kang W, Zhang J Z, Lei P F, et al. Computation of Unsteady Viscous Flow around a Locally Flexible Airfoil at Low Reynolds Number[J]. Journal of Fluids and Structures, 2014, 46: 42-58
[16] Holmes P, Lumley J L, Berkooz G. Turbulence, Coherent Structures, Dynamical Systems and Symmetry[M]: Cambridge Univ Pr, 1998
[17] Sirovich L. Turbulence and the Dynamics of Coherent Structures. Part I: Coherent Structures[J]. Quarterly of Applied Mathematics, 1987, 45 (3): 561-571
[18] Kang W, Zhang J Z, Ren S, et al. Nonlinear Galerkin Method for Low-Dimensional Modeling of Fluid Dynamic System Using POD Modes[J]. Communications in Nonlinear Science and Numerical Simulation, 2015, 22(1/2/3): 943-952