论文:2015,Vol:33,Issue(4):633-638
引用本文:
毛昭勇, 田文龙, 丁文俊. 伸缩叶片式垂直轴风机叶轮的数值仿真[J]. 西北工业大学学报
Mao Zhaoyong, Tian Wenlong, Ding Wenjun. Numerical Investigation of A Novel Vertical Axis Wind Turbine with Controllable Blades[J]. Northwestern polytechnical university

伸缩叶片式垂直轴风机叶轮的数值仿真
毛昭勇, 田文龙, 丁文俊
西北工业大学 航海学院, 陕西 西安 710072
摘要:
为减小垂直轴阻力型风机叶轮在回程方向的阻力,提出了一种伸缩叶片式垂直轴风机叶轮方案,设计了叶片伸缩机构来控制叶片的径向位置,并给出了叶片的运动规律。为进一步探索该叶轮在工作状况下的力矩、功率特性,采用滑移网格技术对不同叶片数目的叶轮进行了二维计算流体动力学数值计算,并分析了实际工况下压力场的基本特点。结果表明:叶片力矩系数在进程方向为较大正值,而在回程方向保持在0值附近;四叶片叶轮在速比系数为0.4时获得最大平均功率系数0.244 9。
关键词:    垂直轴    风机叶轮    伸缩叶片    计算流体力学   
Numerical Investigation of A Novel Vertical Axis Wind Turbine with Controllable Blades
Mao Zhaoyong, Tian Wenlong, Ding Wenjun
College of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In order to reduce the negative torque of drag-type vertical axis wind turbines (VAWTs) in the returning direction, a novel VAWT with retractable blades is proposed. Controlled by a link mechanism, the blades can be entirely hidden in the windshield in the returning direction and negative torques can then be considerably reduced. With the aim of further investigating the torque and power property of the turbine, two-dimensional computational fluid dynamics (CFD) simulations were carried out with a sliding mesh method. The effects of blade number and rotation speed were considered as well. The results and their analysis preliminarily demonstrated that the blade generates nearly no negative torque in the returning direction. The maximum averaged power coefficient is 0.2449, obtained at a flow coefficient of 0.4.
Key words:    vertical axis    wind turbine    controllable blade    computational fluid dynamics   
收稿日期: 2015-03-19     修回日期:
DOI:
基金项目: 国家自然科学基金(51179159)资助
通讯作者:     Email:
作者简介: 毛昭勇(1980—), 西北工业大学副教授,主要从事海洋可再生能源开发利用研究。
相关功能
PDF(2921KB) Free
打印本文
把本文推荐给朋友
作者相关文章
毛昭勇  在本刊中的所有文章
田文龙  在本刊中的所有文章
丁文俊  在本刊中的所有文章

参考文献:
[1] Burton T, Sharpe D, Jenkins N, et al. Wind Energy Handbook [M]. West Sussex: John Wiley & Sons, 2001
[2] Yang B, Lawn C. Fluid Dynamic Performance of a Vertical Axis Turbine for Tidal Currents[J]. Renewable Energy, 2011,36(12):3355-3366
[3] Hwang I, Lee Y, Kim S. Optimization of Cycloidal Water Turbine and the Performance Improvement by Individual Blade Control[J]. Applied Energy, 2009,86(9):1532-1540
[4] Pope K, Dincer I, Naterer G. Energy and Energy Efficiency Comparison of Horizontal and Vertical Axis Wind Turbines[J]. Renewable Energy, 2010, 35(9): 2102-2113
[5] Shigetomi A, Murai Y, Tasaka Y, et al. Interactive Flow Field Around Two Savonius Turbines[J]. Renewable Energy, 2011, 36(2):536-545
[6] Saha U, Thotla S, Maity D. Optimum Design Configuration of Savonius Rotor Through Wind Tunnel Experiments[J]. Journal of Water Engineering and Industrial Aerodynamics, 2008, 96(8/9):1359-1375
[7] Irabu K, Roy J. Study of Direct Force Measurement and Characteristics on Blades of Savonius Rotor at Static State[J]. Experimental Thermal and Fluid Science, 2011, 35(4):653-659
[8] Akwa J, Junior G, Petry A. Discussion on the Verification of the Overlap Ratio Influence on Performance Coefficients of a Savonius Water Rotor Using Computational Fluid Dynamics[J]. Renewable Energy, 2012, 37(1):141-149
[9] Golecha K, Eldho T, Prabhu S. Influence of the Deflector Plate on the Performance of Modified Savonius Water Turbine[J]. Applied Energy, 2011, 88(9): 3207-3217
[10] Mohamed M, Janiga G, Pap E, et al. Optimization of Savonius Turbines Using an Obstacle Shielding the Returning Blade[J]. Renewable Energy, 2010, 35(11): 2618-2626
[11] Dragomirescu A. Performance Assessment of a Small Wind Turbine with Cross Flow Runner by Numerical Simulations[J]. Renewable Energy, 2011, 36(3): 957-965
[12] U. S. Sandia Laboratories. Wind Tunnel Performance Data for Two-and-Three-Bucket Savonius Rotors[R]. SAND76-0131, New Mexico, 1977