论文:2015,Vol:33,Issue(5):843-848
引用本文:
吴姚振, 杨益新, 杨龙, 王永威. 基于恒定束宽波形保真及干扰抑制的水下目标识别方法[J]. 西北工业大学学报
Wu Yaozhen, Yang Yixin, Yang Long, Wang Yongwei. Underwater Target Recognition Based on Constant-Beamwidth Waveform Fidelity and Interference-Suppression[J]. Northwestern polytechnical university

基于恒定束宽波形保真及干扰抑制的水下目标识别方法
吴姚振, 杨益新, 杨龙, 王永威
西北工业大学 航海学院, 陕西 西安 710072
摘要:
水下目标辐射噪声通过阵列波束形成后易造成波形失真,且受干扰的影响,严重降低了目标的识别效果。为此提出了恒定束宽波形保真及干扰抑制的水下目标识别方法。该方法通过二阶锥规划方法设计恒定束宽波束形成器,用以实现波形保真并滤除干扰源的影响,结合人耳听觉感知机理和经典的DEMON分析,提取出有效反映目标类别属性的联合特征矢量。针对直线阵,利用单水听器获得的真实目标辐射噪声,仿真了干扰条件下阵列输出信号并开展识别实验,结果表明所提出的水下目标识别方法可以有效实现目标的准确分类,且对目标形态有着良好的宽容性。
关键词:    恒定束宽    干扰抑制    水下目标识别    特征提取    DEMON分析    二阶锥规划   
Underwater Target Recognition Based on Constant-Beamwidth Waveform Fidelity and Interference-Suppression
Wu Yaozhen, Yang Yixin, Yang Long, Wang Yongwei
College of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
In the presence of interference, the recognition performance of underwater target radiated noise severely degrades due to waveform distortion after array beanforming. Based on constant-beamwidth and interference-suppression, a new method of underwater target recognition algorithm is proposed to improve the fidelity of waveform in this paper. In this method, the second-order cone programming (SOCP) is exploited to deal with signal distortion of broadband constant-beamwidth beamforming. Combining SOCP with auditory filtering techniques, we extract intrinsic features of the targets to effectively distinguish them from each other. Based on array signal simulated from the ship-radiated noise collected by a hydrophone, the results and their analysis demonstrate preliminarily the effectiveness of the proposed algorithm in target classification.
Key words:    array processing    backpropagation algorithms    beamforming    computer simulation    discrete Fourier transforms    efficiency    feature extraction    filter banks    hydrophones    interference suppression    target tracking    constant beamwidth    DEMON analysis    second-order cone programming (SOCP)    underwater target recognition   
收稿日期: 2015-04-16     修回日期:
DOI:
基金项目: 国家自然科学基金(11274253)资助
通讯作者:     Email:
作者简介: 吴姚振(1985—),西北工业大学博士研究生,主要从事水声信号处理与目标识别研究。
相关功能
PDF(1505KB) Free
打印本文
把本文推荐给朋友
作者相关文章
吴姚振  在本刊中的所有文章
杨益新  在本刊中的所有文章
杨龙  在本刊中的所有文章
王永威  在本刊中的所有文章

参考文献:
[1] Zhao X and Wang D. Analyzing Noise Robustness of MFCC and GFCC Features in Speaker Identification[C]//Proceedings of ICASSP, 2013:7204-7208
[2] Barua P, Ahmad K, Khan A A S, et al. Neural Network Based Recognition of Speech Using MFCC Features[C]//Proceedings of ICIEV, 2014:1-6
[3] Yucesoy E, Nabiyev V V. Comparison of MFCC, LPCC and PLP Features for the Determination of a Speaker's Gander[C]//Proceedings of Signal Processing and Communications Applications, 2014:321-324
[4] Hermansky H. Perceptual Linear Predictive (PLP) Analysis of Speech[J]. J Acoust Soc Am, 1990, 87(4):321-324
[5] Wu Y, Yang Y, Tian F, et. al. Robust Target Feature Extraction Based on Modified Cochlear Filter Analysis Model[C]//Proceedings of ICSPCC, 2013:1-5
[6] Tucker S, Brown G J. Classification of Transient Sonar Sounds Using Perceptually Motivated Features[J]. IEEE Journal of Oceanic Engineering, 2005, 30(3):588-600
[7] 马元锋, 陈克安, 王娜, 等. 听觉模型输出谱特征在声目标识别中的应用[J]. 声学学报, 2009, 34(2):142-150 Ma Yuanfeng, Chen Kean, Wang Na, et al. Application of Auditory Spectrum-Based Features into Acoustic Target Recognition[J]. Acta Acustica, 2009, 34(2):142-150 (in Chinese)
[8] Valero X, Alias F. Gammatone Cepstral Coefficients:Biologically Inspired Feature for Non-Speech Audio Classification[J]. IEEE Trans on Multimedia, 2012, 14(6):1684-1689
[9] 杨益新. 声呐波束形成与波束域高分辨方位估计技术研究[D]. 西安:西北工业大学, 2002 Yang Yixin. Studies on Beamforming and Beamspace High Resolution Bearing Estimation Techniques in Sonar Systems[D]. Xi'an, Northwestern Polytechnical University, 2002 (in Chinese)
[10] Harry L Van Trees. 最优阵列处理技术[M]. 汤俊,译. 北京:清华大学出版社, 2008 Harry L Van Tree. Optimum Array Processing[M]. Tang Jun, Translator, Beijing:Tsinghua University Press, 2008 (in Chinese)
[11] 李贵斌, 声呐基阵设计原理[M]. 北京:海洋出版社, 1993 Li Guibin. The Principles of Sonar Array Designing[M]. Beijing:China Ocean Press, 1993 (in Chinese)
[12] Valero X, Alias F. Gammatone Cepstral Coefficients:Biologically Inspired Feature for Non-Speech Audio Classification[J]. IEEE Trans on Multimedia, 2012, 14(6):1684-1689
[13] Lyon R F, Katsiamis A G, Drakakis E M. History and Feature of Auditory Filter Models[C]//Proceedings of IEEE ISCAS, 2010:3809-3812
[14] 吴姚振, 杨益新, 田丰,等. 基于Gammatone频率离散小波系数的水下目标鲁棒识别[J]. 西北工业大学学报, 2014, 32(6):906-911 Wu Yaozhen, Yang Yixin, Tian Feng, et al. Robust Underwater Target Recognition Based on Gammatone Frequency Discrete Wavelet Coefficients[J]. Journal of Northwestern Polytechnical University, 2014, 32(6):906-911 (in Chinese)
[15] Yang G, Kwan H K. Adaptive Subband Wiener Filtering for Speech Enhancement Using Critical-Band Gammatone Filterbank[J]. Circuits and Systems, 2005, 1:732-735
[16] Smith J O, Abel J S. Bark and ERB Bilinear Transform[J]. IEEE Tans on Speech and Audio Processing, 1999, 7(6):697-708
相关文献:
1.吴姚振, 杨益新, 田丰, 杨龙, 陶灿.基于Gammatone频率离散小波系数的水下目标鲁棒识别[J]. 西北工业大学学报, 2014,32(6): 906-911