论文:2015,Vol:33,Issue(5):804-810
引用本文:
刘祥, 孙秦. 一种弹性机翼的颤振主动抑制与阵风减缓方法[J]. 西北工业大学学报
Liu Xiang, Sun Qin. A Robust Active Flutter Suppression and Gust Alleviation Method for Flexible Wing[J]. Northwestern polytechnical university

一种弹性机翼的颤振主动抑制与阵风减缓方法
刘祥, 孙秦
西北工业大学 航空学院, 陕西 西安 710072
摘要:
由于航空器的弹性性质,飞行过程中飞行参数的不断变化会引发运动稳定性和阵风响应特性的改变。在设计颤振主动抑制或阵风减缓控制器的过程中,以某一飞行状态为基础设计出的控制律往往不能保证在一定飞行参数范围内的性能。针对此问题,首先通过非定常气动力有理拟合方法建立时域连续阵风响应状态空间方程,再考虑模型随马赫数和动压的变化特性建立线性参数变化(LPV)模型。最后以线性参数变化模型为基础构造了包含动压和马赫数参数不确定性的线性分式变换模型,并设计了机翼颤振主动抑制与阵风减缓鲁棒控制器。结果表明,对于算例机翼,其在马赫数0.5~0.7范围内的颤振动压平均增大10%,且在飞行参数不断变化的时域仿真中,翼尖过载的均方根值降低51.4%。
关键词:    非定常气动力    线性参数变化模型    鲁棒控制    颤振主动抑制    阵风减缓   
A Robust Active Flutter Suppression and Gust Alleviation Method for Flexible Wing
Liu Xiang, Sun Qin
College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The stability characteristics and dynamic responses of a flexible wing vary with flight conditions. During the design process of a controller for active flutter suppression or gust alleviation, the controller's performance cannot be sustained when flight conditions change if it is designed on the basis of a single flight condition. To solve this problem, the time domain state-space model is firstly built up with rational function approximation of the unsteady aerodynamics, then the model's dependence on Mach number and dynamic pressure is taken into account by constructing a linear parameter-varying (LPV) model. A linear fractional transformation model is finally built up on the basis of the LPV model; after which a robust controller is designed for active flutter suppression and gust alleviation. The results on a test wing show that the flutter dynamic pressure increases about 10% when the Mach number varies between 0.5 and 0.7. As can be seen from the simulation results, when the flight parameters keep varying, the root-mean-square of the wing tip overloads decreases by 51.4%.
Key words:    acceleration    closed loop control systems    computer software    controllers    damping    design    dynamic response    finite element method    flexible wings    flow velocity    flutter    Laplace transforms    least squares approximations    Mach number    matrix algebra    mean square error    pressure    robust control    stability    transfer functions    wind effects    active flutter suppression    gust alleviation    linear parameter-varying (LPV) model    unsteady aerodynamics   
收稿日期: 2015-04-22     修回日期:
DOI:
基金项目: 中航工业产学研创新项目(Cxy2010xG18)资助
通讯作者:     Email:
作者简介: 刘祥(1991—),西北工业大学博士研究生,主要从事飞行器气动伺服弹性系统研究。
相关功能
PDF(1417KB) Free
打印本文
把本文推荐给朋友
作者相关文章
刘祥  在本刊中的所有文章
孙秦  在本刊中的所有文章

参考文献:
[1] Borglund D. Robust Aeroelastic Stability Analysis Considering Frequency-Domain Aerodynamic Uncertainty[J]. Journal of Aircraft, 2003, 40(1):189-193
[2] Karpel M, Moulin B, Idan M. Robust Aeroservoelastic Design with Structural Variations and Modeling Uncertainties[J]. Journal of Aircraft, 2003, 40(5):946-954
[3] Borglund D. The μ-k Method for Robust Flutter Solutions[J]. Journal of Aircraft, 2004, 41(5):1209-1216
[4] Lind R, Brenner M. Aeroelastic and Aeroservoelastic Models, Robust Aeroservoelastic Stability Analysis:Flight Test Applications[M]. London:Springer, 1999:55-63
[5] Moulin B. Robust Controller Design for Active Flutter Suppression[R]. AIAA-2004-5115
[6] Qian W M, Huang R, Hu H Y, et al. New Method of Modeling Uncertainty for Robust Flutter Suppression[J]. Journal of Aircraft, 2013, 50(3):994-998
[7] Barker J M, Blalas G J, Blue P A. Gain-Scheduled Linear Fractional Control for Active Flutter Suppression[J]. Journal of Guidance, Control, and Dynamics, 1999, 22(4):507-512
[8] Ronch A D, Tantaroudas N D, Jiffri S, et al. A Nonlinear Controller for Flutter Suppression:from Simulation to Wind Tunnel Testing[R]. AIAA-2014-0345
[9] Cassaro M, Battipede M, Marzocca P, et al. Comparison of Adaptive Control Architectures for Flutter Suppression[J]. Journal of Guidance, Control, and Dynamics, 2015, 38(2):346-355
[10] Blue P, Balas G J. Linear Parameter-Varying Control for Active Flutter Suppression[R], AIAA-1997-3640
[11] Azoulay D, Karpel M. Characterization of Method for Computation of Aeroservoelastic Response to Gust Excitation[R]. AIAA-2006-1938
[12] Hoblit F M, Gust Loads on Aircraft:Concepts and Applications[M]. Washington D C, American Institute of Aeronautics and Astronautics, Inc, 1988
[13] Doyle J C, Glover K, Khargonekar P, et al. State-Space Solutions to Standard H2 and H Control Problems[C]//IEEE Trans on Automatic Control, 1989:831-847
[14] Moore B. Principal Component Analysis in Linear Systems:Controllability, Observability, and Model Reduction[C]//IEEE Trans on Automatic Control, 1981:17-31