论文:2014,Vol:32,Issue(4):499-504
引用本文:
王伟, 周洲, 祝小平, 王睿. 考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J]. 西北工业大学
Wang Wei, Zhou Zhou, Zhu Xiaoping, Wang Rui. Static Aeroelastic Characteristics Analysis of a Very Flexible Solar Powered UAV with Geometrical Nonlinear Effect Considered[J]. Northwestern polytechnical university

考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析
王伟1, 周洲1, 祝小平2, 王睿1
1. 西北工业大学 无人机特种技术重点实验室, 陕西 西安 710065;
2. 西北工业大学 无人机研究所, 陕西 西安 710065
摘要:
大柔性太阳能无人机在气动力的作用下产生较大的弯曲变形,引起气动载荷的重新分布及作用方向的改变,线性理论难以获得足够的精度。基于共旋转有限元理论,推导了几何非线性空间梁单元的切线刚度矩阵和内力求解格式,几何精确的描述了无人机机翼结构的几何非线性弹性变形;编写了空间共旋坐标有限元求解代码,利用计算流体力学软件FLUENT计算气动力,构造了流固耦合求解器;研究了类"太阳神"布局太阳能无人机几何大变形下的静气动弹性响应问题。研究结果表明:无人机受载变形后导致升阻比降低,翼尖弯曲变形为展长的13%时,升阻比降低4.2%,滚转力矩导数增加了300%,偏航力矩导数增加了350%;几何非线性效应改善了气动载荷在展向的分布,有利于机翼结构设计。研究工作对大柔性太阳能无人机的设计具有一定的参考意义。
关键词:    几何非线性    CR理论    柔性结构    横航向稳定性    静气动弹性    太阳能无人机   
Static Aeroelastic Characteristics Analysis of a Very Flexible Solar Powered UAV with Geometrical Nonlinear Effect Considered
Wang Wei1, Zhou Zhou1, Zhu Xiaoping2, Wang Rui1
1. National Key Laboratory of Science and Technology on UAV, Northwestern Polytechnical University, Xi'an 710065, China;
2. UAV Research Institute, Northwestern Polytechnical University, Xi'an 710065, China
Abstract:
Very flexible solar powered UAV under aerodynamic loading undergoes large deformation and aerody-namic load distribution is not possible to be obtained sufficiently precisely by means of linear theory. Starting from Ref.12 by Crisfield et al, we develop a static aeroelastic characteristics analysis algorithm suitable to very flexible aircraft;this is explained in sections 1 and 2 of the full paper. The core of section 1 is that, using the co-rotational theory, we derive the expression of tangent stiff matrix and that of internal force of a spatial two-node beam element of a geometrically nonlinear structure. The static aeroelastic equations are set up in section 2. Section 3 analyzes the static aeroelastic characteristics of a solar powered UAV with the layout similar to Helios. The results given in Figs.5 through 8 and their analysis show preliminarily that:the distortion of the flexible wing leads to lift loss, when the wingtip displacement is 13% of span, the lift-drag ratio decreases by 4?2%, the rolling moment coefficient deriva-tive increases by 300%, and the yawing moment coefficient derivative increases by 350%; the geometrical nonlinear bending effect improves the aerodynamic load distribution along the span, thus benefiting structure design. The investigation is believed to be of some reference value to the design of very flexible solar powered UAV.
Key words:    aeroelasticity    aircraft    algorithms    computer software    deformation    design    elastic deformation    flexible structures    flow fields    lift    lift drag ratio    matrix algebra    Navier Stokes equations    Newton-Raphson method    schematic diagrams    solar energy    stability    stiffness matrix    turbulence models    unmanned aerial vehicles(UAV)     wings    co-rotational(CR) theory    geometrically nonlinear structures    lateral-directional stability    solar powered UAV    static aeroelasticity   
收稿日期: 2013-11-08     修回日期:
DOI:
基金项目: 国家自然科学基金(11202162、11302178)资助
通讯作者:     Email:
作者简介: 王伟(1988-),西北工业大学博士研究生,主要从事无人机总体设计、气动弹性学研究。
相关功能
PDF(374KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王伟  在本刊中的所有文章
周洲  在本刊中的所有文章
祝小平  在本刊中的所有文章
王睿  在本刊中的所有文章

参考文献:
[1] Cestino E. Design of Very Long-Endurance Solar Powered UAV[D]. Politecnico di Torino, 2006
[2] Romeo G, Frulla G, Cestino E, Corsino G. HELIPLAT: Design, Aerodynamic, Structural Analysis of Long-Endurance SolarPowered Stratospheric Platform [J]. Aircr, 2004, 41 (6): 1505-1520
[3] Kirk Flittie, Bob Curtin. Pathfinder Solar-Powered Aircraft Flight Performance [R]. AIAA-1998-4446
[4] Youngblood J W, Talay T A. Solar-Powered Airplane Design for Long-Endurance, High-Altitude Flight [R]. AIAA-1982-0811
[5] 昌 敏, 周 洲, 郑志成. 太阳能飞机原理及总体参数敏度分析[J]. 西北工业大学学报, 2010, 28(5): 792-796 Chang Min, Zhou Zhou, Zheng Zhicheng. Flight Principles of Solar-Powered Airplane and Sensitivity Analysis of Its Conceptual Parameters[J]. Journal of Northwestern Polytechnical University, 2010, 28(5): 792-796 (in Chinese)
[6] Noll T E, Brown J M, Perez-Davis M E, Ishmael S D. Investigation of the Helios Prototype Aircraft Mishap[R]. Tech Rep, NASA, 2004
[7] Patil M J, Hodges D H, Cesnik C E S. Nonlinear Aeroelasticity and Flight Dynamics of High-Altitude Long-Endurance Aircraft [R]. AIAA-1999-1470
[8] Patil M J, Hodges D H. Flight Dynamics of Highly Flexible Flying Wings [R]. Journal of Aircraft, 2006, 43(6): 1790-1798
[9] Jaworski J W. Nonlinear Aeroelastic Analysis of Flexible High Aspect Ratio Wing Including Correction with Experiment[D]. Duke University, 2009
[10] Zhang Jian, Xiang Jinwu. Nonlinear Aeroelastic Response of High-Aspect-Ratio Flexible Wings[J]. Chinese Journal of Aeronautics, 2009, 22(4): 355-363
[11] Crisfield M A, Galvanetto U, Jeleni G. Dynamics of 3-D Co-Rotational Beams[J]. Computational Mechanics, 1997, 20:507-519
[12] Rafael Palacios, Joseba Murua, Robert Cook. Structural and Aerodynamic Models in Nonlinear Flight Dynamics of Very Flexible Aircraft[J]. AIAA Journal, 2010, 48(11): 2648-2659