论文:2012,Vol:30,Issue(1):32-37
引用本文:
铁钰嘉, 杨伟, 岳晓奎. 航天器姿轨耦合自适应同步控制[J]. 西北工业大学
Tie Yujia, Yang Wei, Yue Xiaokui. Improving Adaptive Synchronization Control of Coupled Spacecraft Attitude and Orbit[J]. Northwestern polytechnical university

航天器姿轨耦合自适应同步控制
铁钰嘉1,2, 杨伟1,2, 岳晓奎1
1. 西北工业大学,陕西 西安 710072;
2. 成都飞机设计研究所,四川 成都 610041
摘要:
航天器动力学模型的精确建立,对于成功完成空间任务来说必不可少,而单独考虑轨道或姿态的模型无法满足任务高精度要求,因此从相对轨道动力学方程和修正罗德里格斯参数(MRP)表示的姿态运动学方程出发,建立了航天器六自由度的相对耦合动力学方程。为了给出姿轨运动的基准,分别设计了航天器理想姿态和椭圆加指数接近轨道。针对航天器参数不确定问题设计了自适应同步控制律,并通过Lyapunov直接法证明闭环系统的全局渐近稳定性。从仿真结果可以看出,自适应同步控制算法能使轨道和姿态误差逐步趋于零。
关键词:    姿轨耦合模型    自适应同步控制    类拉格朗日方程    修正罗德里格斯参数   
Improving Adaptive Synchronization Control of Coupled Spacecraft Attitude and Orbit
Tie Yujia1,2, Yang Wei1,2, Yue Xiaokui1
1. Northwestern Polytechnical University, Xi'an 710072, China;
2. Chengdu Aircraft Design and Research Institute, Chengdu 610041, China
Abstract:
Sections 1, 2 and 3 explain the adaptive synchronization control mentioned in the title,which we believeis an improvement over previous ones.Their core consists of: "Precise dynamic model of spacecraft is essential forspace missions to be completed successfully.Nevertheless, the independent orbit or attitude dynamic models can notmeet the requirements of high precision tasks.We developed a 6-DOF relative coupling dynamic model based uponthe relative motion dynamics equations and attitude kinematics equations described by MRP(Modified Rodrigues Pa-rameters).In order to give the benchmarks of attitude and orbit motion respectively,the ideal spacecraft attitudeand the elliptical plus exponent track orbit were given.Nonlinear synchronization control law was designed for theuncertainties of spacecraft parameters,whose close-loop system was proved to be globally asymptotically stable byLyapunov direct method."Finally,the simulation results,presented in Figs.3 through 5,and their analysis illus-trate preliminarily that the nonlinear synchronization control algorithm can robustly drive the orbit errors and attitudeones to converge to zero.
Key words:    algorithms    analysis    control    design    dynamics    equations of motion    errors    kinematics    Lyapunovmethods    models    orbits    Runge-Kutta methods    robustness (control systems)    simulation    spaceflight    spacecraft    stability    synchronization    tracking (position)    uncertain systems    velocity    atti-tude and orbital coupling model    Modified Rodrigues Parameters(MRP)    quasi-Lagrange equation   
收稿日期: 2011-04-06     修回日期:
DOI:
通讯作者:     Email:
作者简介: 铁钰嘉(1988-),西北工业大学博士研究生,主要从事动力学建模与控制研究。
相关功能
PDF(411KB) Free
打印本文
把本文推荐给朋友
作者相关文章
铁钰嘉  在本刊中的所有文章
杨伟  在本刊中的所有文章
岳晓奎  在本刊中的所有文章

参考文献:
[1] Partch Russell E, Baker Vern, Keith Clark. Autonomous Proximity Microsatellites. ADRL Technology Horizons, 2003, 4(4):16~18
[2] Inalhan G. Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits. Journal of Guidance,Control,and Dy-namics, 2002, 25: 48~60
[3] Shay Segal. Effect of Kinematic Rotation-Translation Coupling on Relative Spacecraft Translational Dynamics. Journal of Guid-ance,Control and Dynamics, 2009, 32(3): 1045~1050
[4] Pan H, Kapila V. Adaptive Nonlinear Control for Spacecraft Formation Flying with Coulped Translational and Attitude Dynamics.Proceedings of the 40th IEEE Conference on Decision and Control,New York, 2001, 2057~2062
[5] Xu Yunjun. Chattering Free Sliding Mode Control for a 6 DOF Formation Flying Mission,AIAA-2005-6464
[6] Koji Yamanaka. Simulataneous Translation and Rotation Control Law for Formation Flying Satellites. AIAA-2000-4440
[7] Liu Hongtao. Adaptive Synchronization C ontrol of Multiple Spacecraft Formation Flying. Journal of Dynamic Systems Measure-ment and Control, 2007, 129:337~342
[8] Jia Q L,Li G W. Formation Control and Attitude Cooperative Control of Multiple Rigid Body Systems. Proceedings of the 6th In-ternational Conference on Intelligent Systems Design and Application, 2006
[9] Hyungjoo Yoon. Novel Expressions of Equations of Relative Motion and Control in Keplerian Orbits. An Engineering Note ofJournal of Guidance,Control and Dynamics, 2009, 32(2): 664~669