论文:2014,Vol:32,Issue(2):181-187
引用本文:
王刚, 胡峪, 宋笔锋. 利用螺旋桨动力配平的飞翼布局无人机[J]. 西北工业大学
Wang Gang, Hu Yu, Song Bifeng. A Flying Wing UAV Trimmed with Propeller Thrust[J]. Northwestern polytechnical university

利用螺旋桨动力配平的飞翼布局无人机
王刚, 胡峪, 宋笔锋
西北工业大学 航空学院, 陕西 西安 710072
摘要:
静稳定的固定翼飞机纵向稳定性与飞行性能对飞机布局的要求往往相矛盾,这个矛盾对飞翼布局飞机的影响尤其显著,这导致飞翼布局的飞行性能一定程度上被降低。针对这个问题,提出了采用螺旋桨动力参与纵向配平的飞翼布局无人机。提出的飞翼布局无人机使用正弯度翼型改善升阻特性,利用外洗和螺旋桨动力实现无人机纵向配平。利用CMARC面元法和粘性阻力修正进行气动力计算和稳定性分析,在失速范围内,其计算结果与风洞实验结果吻合较好。研究了动力系统螺旋桨和电机的匹配,同时考虑到不同任务段功率需求不同,建立了动力系统效率计算模型并融入到总体设计中。基于遗传算法对有无动力配平的飞翼布局无人机总体参数进行了优化,优化结果表明:采用螺旋桨动力配平可以部分地替代升降副翼进行纵向配平,一方面提升了无人机最大可用升力系数,增大了无人机翼载荷,在保持翼展固定的条件下增大了无人机展弦比,另一方面减小采用正弯度翼型飞翼布局无人机的后掠角和外洗,改善无人机展向升力分布,二者共同作用下提高无人机升阻比,提升了无人机的航时。最后探讨了总体参数对螺旋桨动力配平布局无人机性能的影响,为此类无人机设计提供了一定的指导意义。
关键词:    动力配平    飞翼布局    电动无人机    总体参数设计    遗传算法   
A Flying Wing UAV Trimmed with Propeller Thrust
Wang Gang, Hu Yu, Song Bifeng
College of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract:
The existing aircraft configuration cannot satisfy the requirements for the longitudinal stability and flight performance of a static and stable fixed-wing aircraft. This is especially true for a flying wing aircraft, whose flight performance deteriorates in maintaining its static stability. Hence, we propose a new aerodynamic configuration that uses the propeller thrust to trim longitudinally the flying wing of an unmanned aerial vehicle (UAV). In the config-uration, the positive cambered airfoil is used to replace the conventional reflex cambered airfoil so as to raise the lift to drag ratio and lift of the UAV, which is longitudinally trimmed by wash-out and propeller thrust. We use the commercial software CMARC and empirical formulate to calculate the aerodynamic force of the UAV and analyse its stability. During its stall, the calculation results are in good agreement with the wind tunnel experimental results. We also study the matching between the propeller of the UAV and its motor and establish the mathematical model to calculate the efficiency of its power system and merge it into the overall design by taking into account the difference in power at different mission stages. We use the genetic algorithm to optimize the overall parameters of the flying wing UAV trimmed and not trimmed with propeller thrust. The optimization results, given in Table 1 and Fig. 9, show preliminarily that:(1) the amounts of wash-out and sweepback of the UAV longitudinally trimmed with pro-peller thrust are reduced and its coefficient of maximum lift available and wing loading increase, thereby reducing the wing area;this leads to a larger aspect ratio when the wingspan is kept constant;(2) because of few elevon de-flections and reduced wash-out, the lift to drag ratio increases during cruise and loitering. Finally, we study the effects of overall parameters on the performance of the UAV trimmed with propeller thrust.
Key words:    aerodynamics    aircraft    airfoils    design    efficiency    fixed wings    genetic algorithms    experiments    lift    lift drag ratio    mathematical models    optimization    stability    wings    unmanned aerial vehicles (UAV)    wind tunnels    aspect ratio    propeller thrust trimming    flying wing    configuration parameter   
收稿日期: 2013-05-04     修回日期:
DOI:
通讯作者:     Email:
作者简介: 王刚(1988-),西北工业大学博士研究生,主要从事无人机总体设计研究。
相关功能
PDF(705KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王刚  在本刊中的所有文章
胡峪  在本刊中的所有文章
宋笔锋  在本刊中的所有文章

参考文献:
[1] Karl Nickel, Michael Wohlfahrt. Tailless Aircraft in Theory and Practice[M]. Reston: AIAA Education Series, 1994: 26-27
[2] Ilan Kroo. Design and Development of the Swift: a Foot-Launched Sailplane[R] ∥AIAA-2000-4336
[3] Wagner N, Boland S, Taylor B. Powertrain Design for Hand-Launchable Long Endurance Unmanned Aerial Vehicles[R] ∥ AIAA-2011-6047
[4] 李为吉. 飞机总体设计[M]. 西安: 西北工业大学出版社, 2005: 8-10 Li Weiji. Aircraft Conceptual Design[M]. Xi'an: Northwestern Polytechnical University Press, 2005: 8-10 (in Chinese)
[5] Mustafa Cavcar, Aydan Cavcar. Optimum Range and Endurance of a Piston Propeller Aircraft with Cambered Wing[J]. Journal of Aircraft, 2005, 42(1): 212-217
[6] Richard J F, Kevin G A. Low Reynolds Number, Long Endurance Aircraft Design[R] ∥AIAA-92-1263
[7] Stephen J P. Evaluation of the CMARC Panel Code Software Suite for the Development of a UAV Aerodynamic Model[D]. Naval Postgraduate School, 1997
[8] Timothy Takahashi, Brian German. Zero Lift Drag and Drag Divergence Prediction for Finite Wings in Aircraft Design[R] ∥ AIAA-2010-846
[9] Lance W T. Range and Endurance Estimates for Battery-Powered Aircraft[J]. Journal of Aircraft, 2011, 48(2): 703-707
[10] Ohad Gur, Aviv Rosen. Optimizing Electric Propulsion Systems for Unmanned Aerial Vehicles[J]. Journal of Aircraft, 2009, 46 (4): 1340-1353
[11] Monal Pankaj Merchant. Propeller Performance Measurement for Low Reynolds Number Unmanned Aerial Vehicle Applications [D]. Wichita State University, 2004
[12] Jones J L, Flynn A M. Mobile Robots-Inspiration to Implementation[M]. Wellesley: A K Peters, Ltd., 1999: 203-213
[13] Dale A L, Kamran M. Efficiency Analysis for Long-Duration Electric MAVs[R] ∥AIAA-2005-7090