论文:2014,Vol:32,Issue(2):163-168
引用本文:
王科雷, 周洲, 甘文彪, 许晓平. 太阳能无人机低雷诺数翼型气动特性研究[J]. 西北工业大学
Wang Kelei, Zhou Zhou, Gan Wenbiao, Xu Xiaoping. Studying Aerodynamic Performances of the Low-Reynolds-Number Airfoil of Solar Energy UAV[J]. Northwestern polytechnical university

太阳能无人机低雷诺数翼型气动特性研究
王科雷, 周洲, 甘文彪, 许晓平
西北工业大学 无人机特种技术重点实验室, 陕西 西安 710065
摘要:
以高空低速太阳能无人机翼型研究为背景,对大弯度高升力翼型在一定雷诺数范围内的流动特性进行了研究。采用求解k-kl-w湍流模型的雷诺平均N-S方程有限体积法,对SD7037翼型进行了数值模拟,在排除网格效应影响的基础上,针对较大范围内的低雷诺数复杂流动问题,验证了该湍流模型的适用性与准确性;针对翼型受力特性,分析了气动力随雷诺数变化的趋势;基于典型雷诺数下翼型绕流结构变化,研究了翼型产生高升力的流动特征;通过进一步研究升力非线性特征,揭示了较大迎角下翼型失速特征的流动机理。
关键词:    低雷诺数    气动性能    流动机理    非线性    失速    分离   
Studying Aerodynamic Performances of the Low-Reynolds-Number Airfoil of Solar Energy UAV
Wang Kelei, Zhou Zhou, Gan Wenbiao, Xu Xiaoping
Science and Technology on UAV Laboratory, Northwestern Polytechnical University, Xi'an 710065, China
Abstract:
In order to develop high attitude and low speed solar energy UAV, numerical computations of airfoil were used to analyze the aerodynamic characteristics of high-lift airfoil with high camber in a range of low Reynolds num-ber. Finite volume method and transition k-kl-w turbulence model were used to solve the 2D Reynolds-averaged Navier-Stokes equations. To prove the accuracy of this method, the SD7037 airfoil was selected to undergo an anal-ysis of influences caused by different types of grids and undergo a verification between the numerical results and ex-perimental results. We conducted a detailed analysis of aerodynamic forces and summarized their trends of variation with Reynolds number, then studied the characters of the flow at representative Reynolds numbers and explained the reasons of high lift, and at last, through studying the nonlinear characteristics of the lift discussed the flow mechanism of the stall of the airfoil at large relative angle of attack.
Key words:    aerodynamic stalling    airfoils    angle of attack    computer software    drag coefficient    experiments    finite volume method    flow separation    lift    lift drag ratio    mesh generation    Navier-Stokes equations    numerical methods    Reynolds number    solar energy    turbulence models    two dimensional    unmanned aerial vehicles(UAV)    vortex flow    aerodynamic performance    flow mechanisms    low Reynolds numbe   
收稿日期: 2013-04-23     修回日期:
DOI:
基金项目: 西北工业大学基础研究基金(JCT20130110)资助
通讯作者:     Email:
作者简介: 王科雷(1991-),西北工业大学硕士研究生,主要从事飞行器设计及气动布局设计研究。
相关功能
PDF(624KB) Free
打印本文
把本文推荐给朋友
作者相关文章
王科雷  在本刊中的所有文章
周洲  在本刊中的所有文章
甘文彪  在本刊中的所有文章
许晓平  在本刊中的所有文章

参考文献:
[1] Steven A. Palm-Size Spy Plane[J]. Mechanical Engineering, 1998, 11(3): 74-78
[2] Gao Guanglin, Li Zhanke, Song Bifeng. Key Technologies of Solar Powered Unmanned Air Vehicle [J]. Flight Dynamics,2010, 28(1): 1-4
[3] Lissaman P B S. Low Reynolds Number Airfoils[J]. Ann Rev Fluid Mech, 1983, 15: 223-239
[4] Mark Drela. Low-Reynolds-Number Airfoil Design for the M.I.T. Daedalus Prototype: A Case Study[J]. J Aircraft, 1988, 25 (8): 724-732
[5] Bai Peng, Cui Erjie, Zhou Weijiang. Numerical Simulation of Laminar Separation Bubble over 2D Airfoil at Low Reynolds Number[J]. Acta Aerodynamica Sinica, 2006, 24(4): 416-424
[6] Li Jianhua, Li Feng. Low-Reynolds-Number Numerical Simulation of Inverse Zimmerman Wing[J]. Acta Aerodynamica Sinica,2007, 25(2): 220-225
[7] Wu Shushan, Zhou Zhou, Gan Wenbiao, Xu Xiaoping. Flow Characteristics of Changing the Trailing Edge at Low Reynolds Number[J]. Flight Dynamics, 2012, 30(6): 494-497
[8] Walters D K, Cokljat D. A Three-Equation Eddy-Viscosity Model for Reynolds-Averaged Navier-Stokes Simulations of Transitional Flows [J]. Journal of Fluids Engineering, 2008, 130(1): 1-14
[9] Christopher A L, Andy P B, Philippe G, et al. Summary of Low-Speed Airfoil Data[M]. SoarTech Publication, Virginia Beach, Virginia, USA, 1997
[10] Zhou Yu. The Study of Parameter Estimation for Turbulent Model [D] ∥Mianyang, China Aerodynamics Research and Development Center Graduate School, 2009
[11] Ye Jian, Lin Guohua, Zou Zhengping, Lu Lipeng. The Analysis of Flow around a 2-D Airfoil at Low Reynolds Number [J]. Journal of Aerospace Power, 2002, 18(1): 197-204
[12] Hua Shan, Li Jiang, Liu Chaoqin. Direct Numerical Simulation of Flow Separation around a NACA 0012 Airfoil [J]. Computers & Fluids, 2005, 34: 1096-1114