留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

孔板阀滑阀自锁装置球/盘配对副耐磨性能实验研究

陈林燕 康桂蓉 钟林 何海洋 张荣耀 何霞 陶伟

陈林燕,康桂蓉,钟林, 等. 孔板阀滑阀自锁装置球/盘配对副耐磨性能实验研究[J]. 机械科学与技术,2022,41(12):1950-1957 doi: 10.13433/j.cnki.1003-8728.20220311
引用本文: 陈林燕,康桂蓉,钟林, 等. 孔板阀滑阀自锁装置球/盘配对副耐磨性能实验研究[J]. 机械科学与技术,2022,41(12):1950-1957 doi: 10.13433/j.cnki.1003-8728.20220311
CHEN Linyan, KANG Guirong, ZHONG Lin, HE Haiyang, ZHANG Rongyao, HE Xia, TAO Wei. Experimental Study on Wear Resistance of Ball/Disc Friction Pairs of Orifice Valve Sliding Valve Self-locking Device[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1950-1957. doi: 10.13433/j.cnki.1003-8728.20220311
Citation: CHEN Linyan, KANG Guirong, ZHONG Lin, HE Haiyang, ZHANG Rongyao, HE Xia, TAO Wei. Experimental Study on Wear Resistance of Ball/Disc Friction Pairs of Orifice Valve Sliding Valve Self-locking Device[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1950-1957. doi: 10.13433/j.cnki.1003-8728.20220311

孔板阀滑阀自锁装置球/盘配对副耐磨性能实验研究

doi: 10.13433/j.cnki.1003-8728.20220311
基金项目: 国家自然科学基金面上项目(51775463)、国家重点研发计划项目(2019YFC0312305)、四川科技项目(2020ZHCG0048)、成都市国际科技合作项目(2019-GH02-00055-HZ)及南方海洋科学与工程广东省实验室项目(ZJW-2019-03)
详细信息
    作者简介:

    陈林燕(1989−),讲师,硕士,研究方向为石油钻采设备失效分析,764590259@qq.com

    通讯作者:

    钟林,高级实验师,博士,zhonglin858296@163.com

  • 中图分类号: TH117.1

Experimental Study on Wear Resistance of Ball/Disc Friction Pairs of Orifice Valve Sliding Valve Self-locking Device

  • 摘要: 为优选孔板阀滑阀自锁装置配对副耐磨性能影响因素,选取不同球/盘配对副材料、盘粗糙度和润滑条件开展正交滚滑摩擦试验。敏感性分析结果表明,试验优化参数为:盘材料440C,球材料440C,盘粗糙度Ra = 0.4 μm,润滑条件脂润滑。优选参数配对副在试验后运行良好,球/盘表面形貌无明显磨损,摩擦系数无突变,说明优选参数的抗磨性能满足使用寿命需求。
  • 图  1  实验原理图

    图  2  摩擦副材料维氏硬度

    图  3  粉尘SEM图

    图  4  摩擦因数和总磨损量随因素水平变化趋势图

    图  5  S1 ~ S9磨损后球/盘表面SEM图

    图  6  验证组摩擦系数图及磨损后球/盘表面SEM图

    表  1  粉尘成分表

    组成成分Fe2O3Fe3O4FeCO3FeO(OH)
    含量/ %96.53.140.20.16
    下载: 导出CSV

    表  2  试验工况参数

    工况条件参数
    旋转速度 32 r/min
    温度 25 ℃
    旋转直径 20 mm
    时间 30 min
    加载力 100 N
    下载: 导出CSV

    表  3  正交试验因素水平表

    水平 A
    B
    C
    D
    13043041.6 μm无润滑
    2316L316L0.8 μm粉尘水润滑
    3440C440C0.4 μm脂润滑
    下载: 导出CSV

    表  4  正交试验设计

    分组号ABCD
    S13043041.6 μm无润滑
    S2304316L0.8 μm粉尘水润滑
    S3304440C0.4 μm脂润滑
    S4316L3040.4 μm粉尘水润滑
    S5316L316L1.6 μm脂润滑
    S6316L440C0.8 μm无润滑
    S7440C3040.8 μm脂润滑
    S8440C316L0.4 μm无润滑
    S9440C440C1.6 μm粉尘水润滑
    下载: 导出CSV

    表  5  正交试验结果


    A
    B
    C
    D
    摩擦因数μ总磨损量g/10−3
    S13043041.6 μm无润滑0.274408.25
    S2304316L0.8 μm粉尘水润滑0.269067.69
    S3304440C0.4 μm脂润滑0.115442.46
    S4316L3040.4 μm粉尘水润滑0.217057.67
    S5316L316L1.6 μm脂润滑0.112773.05
    S6316L440C0.8 μm无润滑0.168622.24
    S7440C3040.8 μm脂润滑0.099321.22
    S8440C316L0.4 μm无润滑0.183371.05
    S9440C440C1.6 μm粉尘水润滑0.168751.82
    下载: 导出CSV

    表  6  摩擦因数μ极差分析

    因素ABCD
    Kj10.219630.196920.185310.20880
    Kj20.166150.188400.179000.21829
    Kj30.150480.150940.171950.10918
    Rj0.069150.045980.013360.10911
    下载: 导出CSV

    表  7  总磨损量g极差分析

    因素
    ABCD
    Kj10.006130.005710.004370.00385
    Kj20.004320.003930.003720.00573
    Kj30.001360.002170.003730.00224
    Rj0.004770.003540.000650.00349
    下载: 导出CSV

    表  8  总磨损量方差分析表

    因素平方和
    SS
    自由度
    df
    均方
    MS
    FF0.01dfj, dfe
    A0.007 89120.003 945 71211.418.02
    B0.007 18120.003 590 46210.388.02
    C0.001 85820.000 928 7952.698.02
    D0.050 39820.025 199 09972.888.02
    误差0.003 11290.000 345 778
    总和0.070 44017
    下载: 导出CSV
  • [1] 宋帮鹍, 孙志标. 一种陶瓷芯孔板阀模型: 中国, 208555890U[P]. 2019-03-01

    SONG B K, SUN Z B. A ceramic core orifice plate valve model: CN, 208555890U[P]. 2019-03-01 (in Chinese)
    [2] 杨晓光. 一种可调式孔板阀: 中国, 208651674U[P]. 2019-03-26

    YANG X G. An adjustable orifice valve: CN, 208651674U[P]. 2019-03-26 (in Chinese)
    [3] 宋殷俊. 一种高级孔板阀安全装置: 中国, 209671654U[P]. 2019-11-22

    SONG Y J. An advanced orifice valve safety device: CN, 209671654U[P]. 2019-11-22 (in Chinese)
    [4] 蒋成果, 何磊, 唐瑜, 等. 一种高级孔板阀滑阀自动锁定装置: 中国, 209430846U[P]. 2019-09-24

    JIANG C G, HE L, TANG Y, et al. An automatic locking device for advanced orifice valve slide valve: CN, 209430846U[P]. 2019-09-24 (in Chinese)
    [5] 李安玲, 屈文红, 宋磊, 等. 304奥氏体不锈钢摩擦学实验研究[J]. 机床与液压, 2020, 48(16): 10-14 + 19 doi: 10.3969/j.issn.1001-3881.2020.16.003

    LI A L, QU W H, SONG L, et al. Experimental study on tribological properties of 304 austenitic stainless steel[J]. Machine Tool & Hydraulics, 2020, 48(16): 10-14 + 19 (in Chinese) doi: 10.3969/j.issn.1001-3881.2020.16.003
    [6] 王朋关, 曹中清, 陈海超, 等. 烟炱和灰尘颗粒对紫铜电接触微动磨损性能的影响[J]. 机械工程材料, 2019, 43(12): 12-18 doi: 10.11973/jxgccl201912003

    WANG P G, CAO Z Q, CHEN H C, et al. Effect of soot and dust particles on fretting wear properties of copper under electrical contact[J]. Materials for Mechanical Engineering, 2019, 43(12): 12-18 (in Chinese) doi: 10.11973/jxgccl201912003
    [7] 黄传辉, 刘磊, 张宁. 偶件表面粗糙度对回转支承隔离体使用性能的影响[J]. 表面技术, 2020, 49(9): 244-251 doi: 10.16490/j.cnki.issn.1001-3660.2020.09.027

    HUANG C H, LIU L, ZHANG N. Effect of surface roughness of counterpart on the performance of isolation block in slewing bearing[J]. Surface Technology, 2020, 49(9): 244-251 (in Chinese) doi: 10.16490/j.cnki.issn.1001-3660.2020.09.027
    [8] 康家明, 宋鹏云. 偶件表面粗糙度对PTFE材料摩擦磨损性能的影响[J]. 润滑与密封, 2018, 43(8): 87-92 doi: 10.3969/j.issn.0254-0150.2018.08.014

    KANG J M, SONG P Y. Effect of surface roughness of matching materials on friction and wear properties of PTFE materials[J]. Lubrication Engineering, 2018, 43(8): 87-92 (in Chinese) doi: 10.3969/j.issn.0254-0150.2018.08.014
    [9] 陈威, 贾鑫, 邹辛祺, 等. PEEK与不同材料配副时的干摩擦磨损性能研究[J]. 润滑与密封, 2021, 46(2): 114-120 + 133 doi: 10.3969/j.issn.0254-0150.2021.02.017

    CHEN W, JIA X, ZOU X Q, et al. Investigation of dry tribologies of polyetheretherketone sliding against with different materials[J]. Lubrication Engineering, 2021, 46(2): 114-120 + 133 (in Chinese) doi: 10.3969/j.issn.0254-0150.2021.02.017
    [10] 季德惠, 何晓荣, 沈明学, 等. 不同服役温度下聚氨酯密封材料的摩擦学行为研究[J]. 表面技术, 2021, 50(2): 238-245 doi: 10.16490/j.cnki.issn.1001-3660.2021.02.024

    JI D H, HE X R, SHEN M X, et al. Tribological behavior of polyurethane sealing materials at different service temperatures[J]. Surface Technology, 2021, 50(2): 238-245 (in Chinese) doi: 10.16490/j.cnki.issn.1001-3660.2021.02.024
    [11] 张利刚, 郭月霞, 赵福燕, 等. 羽状氮化碳水润滑剂对环氧树脂-不锈钢配副摩擦学性能的影响[J]. 摩擦学学报, 2022, 42(2): 378-385

    ZHANG L G, GUO Y X, ZHAO F Y, et al. Role of penniform carbon nitride aqueous lubricants on the tribological properties of epoxy resin-stainless steel[J]. Tribology, 2022, 42(2): 378-385 (in Chinese)
    [12] SINGH S, CHEN X C, ZHANG C H, et al. Investigation on the lubrication potential of graphene oxide aqueous dispersion for self-mated stainless steel tribo-pair[J]. Vacuum, 2019, 166: 307-315 doi: 10.1016/j.vacuum.2019.05.015
    [13] FUADI Z, ADACHI K. Properties of tribofilm formed on self-mated stainless steel lubricated by palm methyl ester mixed petroleum diesel fuel[J]. Lubrication Science, 2021, 33(6): 347-357 doi: 10.1002/ls.1557
    [14] CHAUDHRY V, KAILAS S V. Damage mechanisms under fretting of self-mated stainless steel (SS 316L) and chromium carbide coatings[J]. Procedia Engineering, 2014, 86: 111-115 doi: 10.1016/j.proeng.2014.11.018
    [15] 陈平, 王朋飞, 乔小溪. 45钢/PA66配副干滑动摩擦磨损性能研究[J]. 摩擦学学报, 2019, 39(1): 26-34 doi: 10.16078/j.tribology.2018138

    CHEN P, WANG P F, QIAO X X. Friction and wear behavior of 45 steel/PA66 pairs under dry sliding condition[J]. Tribology, 2019, 39(1): 26-34 (in Chinese) doi: 10.16078/j.tribology.2018138
    [16] 郑杰. 试验设计与数据分析: 基于R语言应用[M]. 广州: 华南理工大学出版社, 2016: 56-58

    ZHENG J. Experiment design and data analysis[M]. Guangzhou: South China University of Technology Press, 2016: 56-58 (in Chinese)
    [17] LI J, YANG F B, ZHANG H G, et al. Comparative analysis of different valve timing control methods for single-piston free piston expander-linear generator via an orthogonal experimental design[J]. Energy, 2020, 195: 116966 doi: 10.1016/j.energy.2020.116966
    [18] 温诗铸, 黄平, 田煜, 等. 摩擦学原理[M]. 5版. 北京: 清华大学出版社, 2018: 271

    WEN S Z, HUANG P, TIAN Y, et al. Principles of tribology[M]. 5th ed. Beijing: Tsinghua University Press, 2018: 271 (in Chinese)
    [19] 魏万鑫, 苏云峰, 樊恒中, 等. 氮化硅陶瓷球与轴承钢的微动摩擦磨损特性与损伤行为研究[J]. 摩擦学学报, 2022, 42(1): 113-122

    WEI W X, SU Y F, FAN H Z, et al. Fretting friction and wear characteristics and damage behaviors of Si3N4 ceramic balls sliding against bearing steel[J]. Tribology, 2022, 42(1): 113-122 (in Chinese)
    [20] 杨雪, 李少楠, 王轩, 等. 碳纤维改性聚四氟乙烯的摩擦及振动性能[J]. 高分子材料科学与工程, 2021, 37(5): 60-65 + 73 doi: 10.16865/j.cnki.1000-7555.2021.0123

    YANG X, LI S N, WANG X, et al. Friction and vibration properties of carbon fiber modified polytetrafluoroethylene[J]. Polymer Materials Science and Engineering, 2021, 37(5): 60-65 + 73 (in Chinese) doi: 10.16865/j.cnki.1000-7555.2021.0123
    [21] 李一磊. 不同硬度匹配的马氏体耐热钢耐磨性能研究[D]. 包头: 内蒙古科技大学, 2020: 59-60

    LI Y L. Research on wear resistance of martensitic heat resistant steel with different hardness[D]. Baotou: Inner Mongolia University of Science & Technology, 2020: 59-60 (in Chinese)
    [22] 李一磊, 包汉生, 李权, 等. 硬度对95Cr18钢滚动摩擦性能的影响[J]. 金属功能材料, 2020, 27(5): 38-45 doi: 10.13228/j.boyuan.issn1005-8192.2019077

    LI Y L, BAO H S, LI Q, et al. Effect of hardness on rolling wear properties of 95Cr18 steel[J]. Metallic Functional Materials, 2020, 27(5): 38-45 (in Chinese) doi: 10.13228/j.boyuan.issn1005-8192.2019077
    [23] KRAUSE H, TACKENBERG W. The influence of hardness difference on the frictional and wear behaviour of steel/copper alloy pairs in plane sliding friction under mixed friction conditions[J]. Wear, 1980, 64(2): 291-302 doi: 10.1016/0043-1648(80)90135-0
    [24] 孙宇锋, 左鹏鹏, 计杰, 等. 时间和粗糙度对4Cr5Mo2V钢离子氮化层高温磨损性能的影响[J]. 表面技术, 2021, 50(4): 198-204 + 234 doi: 10.16490/j.cnki.issn.1001-3660.2021.04.019

    SUN Y F, ZUO P P, JI J, et al. Effect of nitriding time and roughness on high temperature wear property of plasma nitriding 4Cr5Mo2V steel[J]. Surface Technology, 2021, 50(4): 198-204 + 234 (in Chinese) doi: 10.16490/j.cnki.issn.1001-3660.2021.04.019
  • 加载中
图(6) / 表(8)
计量
  • 文章访问数:  119
  • HTML全文浏览量:  67
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-25
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回