留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NSMD和LMSST相结合的变转速滚动轴承故障诊断方法

尤光辉 吕勇 易灿灿 余肇鸿

尤光辉, 吕勇, 易灿灿, 余肇鸿. NSMD和LMSST相结合的变转速滚动轴承故障诊断方法[J]. 机械科学与技术, 2022, 41(10): 1598-1607. doi: 10.13433/j.cnki.1003-8728.20220223
引用本文: 尤光辉, 吕勇, 易灿灿, 余肇鸿. NSMD和LMSST相结合的变转速滚动轴承故障诊断方法[J]. 机械科学与技术, 2022, 41(10): 1598-1607. doi: 10.13433/j.cnki.1003-8728.20220223
YOU Guanghui, LYU Yong, YI Cancan, YU Zhaohong. Fault Diagnosis Method of Variable Speed Rolling Bearings Combined with NSMD and LMSST[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1598-1607. doi: 10.13433/j.cnki.1003-8728.20220223
Citation: YOU Guanghui, LYU Yong, YI Cancan, YU Zhaohong. Fault Diagnosis Method of Variable Speed Rolling Bearings Combined with NSMD and LMSST[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(10): 1598-1607. doi: 10.13433/j.cnki.1003-8728.20220223

NSMD和LMSST相结合的变转速滚动轴承故障诊断方法

doi: 10.13433/j.cnki.1003-8728.20220223
基金项目: 

国家自然科学基金面上项目 51875416

国家自然科学基金项目 51805382

湖北省自然科学基金创新群体项目 2020CFA033

浙江省教育厅一般科研项目 Y202148122

详细信息
    作者简介:

    尤光辉(1989-), 讲师, 博士研究生, 研究方向为信号处理及机械故障诊断, youguanghui@zime.zj.cn

    通讯作者:

    吕勇, 教授, 博士生导师, lvyong@wust.edu.cn

  • 中图分类号: TH133.33

Fault Diagnosis Method of Variable Speed Rolling Bearings Combined with NSMD and LMSST

  • 摘要: 为了能够准确反映变转速工况下滚动轴承的时变故障特征,本文提出了一种基于非线性稀疏模态分解(NSMD)和局部最大值同步压缩变换(LMSST)的故障诊断方法。首先利用NSMD对含噪振动信号进行分解,基于各分量的频谱最大相关性进行有用分量的选择;然后对其进行LMSST分析,从时频平面中提取时变故障特征,从而实现变转速下轴承故障诊断。
  • 图  1  本文提出方法的流程图

    图  2  仿真信号时域图及频谱

    图  3  仿真信号理想IF曲线

    图  4  LMD、VMD和NSMD这3种算法对仿真信号的分解结果及其频谱

    图  5  4种时频分析算法的结果

    图  6  试验台实物图及结构简图

    图  7  振动信号时域图及频谱

    图  8  NSMD对实测振动信号的分解结果及频谱

    图  9  4种时频分析算法对分量1的计算结果

    图  10  LMSST结果脊线提取

    图  11  计算故障特征频率与理论值比较

    表  1  仿真模拟信号不同分析方法得到的Renyi熵值比较

    时频分析方法 SST MSST SST2 LMSST
    Renyi熵值 15.264 8 14.521 2 13.856 8 10.268 4
    下载: 导出CSV

    表  2  实际信号不同分析方法得到的Renyi熵值比较

    时频分析方法 SST MSST SST2 LMSST
    Renyi熵值 16.241 8 17.066 1 16.127 6 14.833 5
    下载: 导出CSV
  • [1] 田科位, 董绍江, 姜保军, 等. 基于改进深度残差网络的轴承故障诊断方法[J]. 振动与冲击, 2021, 40(20): 247-254 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202120031.htm

    TIAN K W, DONG S J, JIANG B J, et al. A bearing fault diagnosis method based on an improved depth residual network[J]. Journal of Vibration and Shock, 2021, 40(20): 247-254 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202120031.htm
    [2] 曹玲玲, 李晶, 彭镇, 等. 基于EEMD和快速谱峭度的滚动轴承故障诊断研究[J]. 机电工程, 2021, 38(10): 1311-1316 doi: 10.3969/j.issn.1001-4551.2021.10.013

    CAO L L, LI J, PENG Z, et al. Fault diagnosis of rolling bearing based on EEMD and fast spectral kurtosis[J]. Mechanical & Electrical Engineering, 2021, 38(10): 1311-1316 (in Chinese) doi: 10.3969/j.issn.1001-4551.2021.10.013
    [3] 王大兴. 滚动轴承振动信号降噪及故障识别研究[D]. 兰州: 兰州理工大学, 2020

    WANG D X. Research on de-noising and fault identification of rolling bearing vibration signal[D]. Lanzhou: Lanzhou University of Technology, 2020 (in Chinese)
    [4] 樊高瞻, 周俊, 朱昆莉. 基于改进形态-小波阈值降噪的轴承复合故障声学诊断[J]. 振动与冲击, 2020, 39(12): 221-226+288 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202012030.htm

    FAN G Z, ZHOU J, ZHU K L. An improved morphological-wavelet threshold de-noising method based acoustic diagnosis for bearing composite faults[J]. Journal of Vibration and Shock, 2020, 39(12): 221-226+288 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202012030.htm
    [5] 张坤, 马朝永, 胥永钢, 等. 快速自适应局部均值分解及轴承故障诊断应用[J]. 振动工程学报, 2020, 33(1): 206-212 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202001023.htm

    ZHANG K, MA C Y, XU Y G, et al. Fast and adaptive local mean decomposition method and its application in rolling bearing fault diagnosis[J]. Journal of Vibration Engineering, 2020, 33(1): 206-212 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202001023.htm
    [6] 李慧梅, 安钢, 黄梦. 基于局部均值分解的边际谱在滚动轴承故障诊断中的应用[J]. 振动与冲击, 2014, 33(3): 5-8+13 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201403003.htm

    LI H M, AN G, HUANG M. Application of marginal spectrum based on local mean decomposition in rolling bearing fault diagnosis[J]. Journal of Vibration and Shock, 2014, 33(3): 5-8+13 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201403003.htm
    [7] 张东, 冯志鹏. 基于变分模式分解和微积分增强能量算子的滚动轴承故障诊断[J]. 工程科学学报, 2016, 38(9): 1327-1334 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201609019.htm

    ZHANG D, FENG Z P. Fault diagnosis of rolling bearings based on variational mode decomposition and calculus enhanced energy operator[J]. Journal of Engineering Science, 2016, 38(9): 1327-1334 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD201609019.htm
    [8] 胡斯念. 自适应变分模式分解方法及其在机械故障诊断中的应用[D]. 武汉: 武汉科技大学, 2019

    HU S N. Adaptive variational mode decomposition method and its application in mechanical fault diagnosis[D]. Wuhan: Wuhan University of Science and Technology, 2019 (in Chinese)
    [9] PAN H Y, ZHENG J D, YANG Y, et al. Nonlinear sparse mode decomposition and its application in planetary gearbox fault diagnosis[J]. Mechanism and Machine Theory, 2021, 155: 104082
    [10] FENG Z P, LIANG M, ZHANG Y, et al. Fault diagnosis for wind turbine planetary gearboxes via demodulation analysis based on ensemble empirical mode decomposition and energy separation[J]. Renewable Energy, 2012, 47: 112-126
    [11] 何辉辉. 基于AWF-STFT与SSD的风电齿轮箱故障诊断方法研究[D]. 太原: 中北大学, 2021

    HE H H. Research on fault diagnosis method of wind power gearbox based on AWF-STFT and SSD[D]. Taiyuan: North University of China, 2021 (in Chinese)
    [12] 荆双喜, 罗志鹏, 冷军发, 等. 基于时变滤波与CWT的齿轮箱无转速计阶次跟踪[J]. 机械传动, 2019, 43(6): 144-149 https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201906027.htm

    JING S X, LUO Z P, LENG J F, et al. Tacho-less order tracking for gearbox based on time-varying filter and CWT[J]. Journal of Mechanical Transmission, 2019, 43(6): 144-149 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXCD201906027.htm
    [13] DAUBECHIES I, LU J F, WU H T. Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261
    [14] BEHERA R, MEIGNEN S, OBERLIN T. Theoretical analysis of the second-order synchrosqueezing transform[J]. Applied and Computational Harmonic Analysis, 2018, 45(2): 379-404
    [15] ZHENG X X, WEI Y B, LIU J, et al. Multi-synchrosqueezing S-transform for fault diagnosis in rolling bearings[J]. Measurement Science and Technology, 2020, 32(2): 025013
    [16] YU G, WANG Z H, ZHAO P, et al. Local maximum synchrosqueezing transform: An energy-concentrated time-frequency analysis tool[J]. Mechanical Systems and Signal Processing, 2019, 117: 537-552
    [17] 於玺. 快速傅里叶变换在信号处理中的应用[J]. 信息记录材料, 2021, 22(10): 184-186 https://www.cnki.com.cn/Article/CJFDTOTAL-CXJL202110088.htm

    YU X. Application of Fast Fourier transform in signal processing[J]. Information recording material, 2021, 22(10): 184-186 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CXJL202110088.htm
    [18] 张龙, 宋成洋, 邹友军, 等. 基于Renyi熵和K-medoids聚类的轴承性能退化评估[J]. 振动与冲击, 2020, 39(20): 24-31+46 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202020005.htm

    ZHANG L, SONG C Y, ZOU Y J, et al. Bearing performance degradation assessment based on Renyi entropy and K-medoids clustering[J]. Journal of Vibration and Shock, 2020, 39(20): 24-31+46 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202020005.htm
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  141
  • HTML全文浏览量:  183
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-22
  • 刊出日期:  2022-10-25

目录

    /

    返回文章
    返回