留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

橡胶四元件模型动力学特性分析

俞力洋 黄然 吴少培 丁旺才 李国芳 屈鸣鹤

俞力洋,黄然,吴少培, 等. 橡胶四元件模型动力学特性分析[J]. 机械科学与技术,2022,41(11):1686-1692 doi: 10.13433/j.cnki.1003-8728.20220209
引用本文: 俞力洋,黄然,吴少培, 等. 橡胶四元件模型动力学特性分析[J]. 机械科学与技术,2022,41(11):1686-1692 doi: 10.13433/j.cnki.1003-8728.20220209
YU Liyang, HUANG Ran, WU Shaopei, DING Wangcai, LI Guofang, QU Minghe. Dynamic Characteristics Analysis of Rubber Four-element Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1686-1692. doi: 10.13433/j.cnki.1003-8728.20220209
Citation: YU Liyang, HUANG Ran, WU Shaopei, DING Wangcai, LI Guofang, QU Minghe. Dynamic Characteristics Analysis of Rubber Four-element Model[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1686-1692. doi: 10.13433/j.cnki.1003-8728.20220209

橡胶四元件模型动力学特性分析

doi: 10.13433/j.cnki.1003-8728.20220209
基金项目: 国家自然科学基金项目(11962013,11732014,12162020)、甘肃省优秀研究生“创新之星”项目(2021CXZX-543)、甘肃省教育厅高校大学生就业创业能力提升工程项目(2021)及甘肃省青年科技基金项目(21JR7RA328,21JR7RA335)
详细信息
    作者简介:

    俞力洋(1995−),博士研究生,研究方向为非线性动力学,yuly1101@163.com

    通讯作者:

    丁旺才,教授,博士生导师,dingdd@163.com

  • 中图分类号: O321; O328

Dynamic Characteristics Analysis of Rubber Four-element Model

  • 摘要: 采用四元件模型表征橡胶等黏弹隔振系统的动力学特性,利用谐波平衡法求解了系统的无量纲运动微分方程,分析了参数对系统幅频特性与力传递率的影响规律,推导了系统单频激励与多频激励下最优阻尼系数的计算方法。结果表明:增大阻尼系数或刚度比会使系统共振峰向高频方向偏移,同时也会拓宽系统在低频区的有效隔振范围;刚度比的合理设计可使系统共振峰远离被隔振系统工作主频,而在不降低系统静挠度的条件下,还可通过调整阻尼系数实现系统共振频率的小范围微调;确定刚度比时,系统不同阻尼系数下的幅频响应曲线与力传递率曲线各有一个公共点,基于这一典型特征可计算出系统既定参数下的最优阻尼系数,使系统共振峰值最小、隔振性能最佳;该方法同样适用于多频激励作用下系统最优阻尼系数的计算。
  • 图  1  四元件橡胶隔振系统

    图  2  质量块幅频响应对比图

    图  3  不同参数条件下阻尼系数对质量块幅频响应的影响

    图  4  $ {\mu _{{K1}}} = 1,{\mu _{K2}} = 0.01 $时质量块的最佳幅频响应

    图  5  $ {\mu _{K1}} = 3,{\mu _{K2}} = 0.01 $时质量块的最佳幅频响应

    图  6  双频率激励下质量块最佳幅频响应

    图  7  $ {\mu _{K1}} = 1,{\mu _{K2}} = 0.01 $$\, \beta $$ (\omega ,\xi ) $参数平面的分布

    图  8  $ \xi = 0.2,{\mu _{K2}} = 0.01 $$ \,\beta $$ (\omega ,{\mu _{K1}}) $参数平面的分布

    图  9  参数对系统力传递率的影响

    图  10  $ {\mu _{{\text{k1}}}} = 1,\;{\mu _{{\text{k2}}}} = 0.01 $时系统的最佳力传递率

  • [1] 《中国公路学报》编辑部. 中国筑路机械学术研究综述·2018[J]. 中国公路学报, 2018, 31(6): 1-164 doi: 10.3969/j.issn.1001-7372.2018.06.001

    Editorial Department of China Journal of Highway and Transport. Review on China's road construction machinery research progress: 2018[J]. China Journal of Highway and Transport, 2018, 31(6): 1-164 (in Chinese) doi: 10.3969/j.issn.1001-7372.2018.06.001
    [2] AYDEMIR E, SENDUR P. Simplified transfer function approach for modeling frequency dependency of damping characteristics of rubber bushings[J]. Proceedings of the Institution of Mechanical Engineers, Part D:Journal of Automobile Engineering, 2019, 233(10): 2518-2531 doi: 10.1177/0954407018799773
    [3] 陆泽琦, 陈立群. 非线性被动隔振的若干进展[J]. 力学学报, 2017, 49(3): 550-564 doi: 10.6052/0459-1879-17-064

    LU Z Q, CHEN L Q. Some recent progresses in nonlinear passive isolations of vibrations[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(3): 550-564 (in Chinese) doi: 10.6052/0459-1879-17-064
    [4] 杨俊, 池茂儒, 朱旻昊, 等. 轨道车辆用弹性橡胶垫非线性模型研究[J]. 振动工程学报, 2016, 29(2): 291-297

    YANG J, CHI M R, ZHU M H, et al. The non-linear constitutive model of elastic rubber mat for rail vehicles[J]. Journal of Vibration Engineering, 2016, 29(2): 291-297 (in Chinese)
    [5] 戚壮, 王晓雷, 莫荣利, 等. 高速列车空气弹簧横向特性动力学建模与应用[J]. 振动、测试与诊断, 2021, 41(5): 904-912

    QI Z, WANG X L, MO R L, et al. Dynamic modeling and application of lateral characteristics for high speed train air spring[J]. Journal of Vibration, Measurement & Diagnosis, 2021, 41(5): 904-912 (in Chinese)
    [6] 黄彩虹, 曾京, 宋春元. 高速列车抗蛇行减振器的简化物理参数模型[J]. 铁道学报, 2021, 43(7): 47-56 doi: 10.3969/j.issn.1001-8360.2021.07.007

    HUANG C H, ZENG J, SONG C Y. Simplified physical parameter model of high-speed train yaw damper[J]. Journal of the China Railway Society, 2021, 43(7): 47-56 (in Chinese) doi: 10.3969/j.issn.1001-8360.2021.07.007
    [7] 李继伟, 丁旺才, 李国芳. 多自由度非线性吸振器的连接方式及吸振效果[J]. 兰州交通大学学报, 2017, 36(1): 96-101 doi: 10.3969/j.issn.1001-4373.2017.01.017

    LI J W, DING W C, LI G F. Connection and performance of a vibration system with multi-degree of freedom nonlinear energy sink[J]. Journal of Lanzhou Jiaotong University, 2017, 36(1): 96-101 (in Chinese) doi: 10.3969/j.issn.1001-4373.2017.01.017
    [8] 韦凯, 王丰, 杨麒陆, 等. 钢轨扣件弹性垫板的宽频动力性能及其理论表征[J]. 铁道学报, 2019, 41(2): 130-136 doi: 10.3969/j.issn.1001-8360.2019.02.018

    WEI K, WANG F, YANG Q L, et al. Broad frequency-domain dynamic properties of rail pad and its theoretical model[J]. Journal of the China Railway Society, 2019, 41(2): 130-136 (in Chinese) doi: 10.3969/j.issn.1001-8360.2019.02.018
    [9] 俞力洋, 黄然, 丁旺才, 等. 非线性Zener模型的求解及多态共存机理研究[J]. 振动与冲击, 2022, 41(12): 51-58

    YU L Y, HUANG R, DING W C, et al. Solution and polymorphic coexistence mechanism study of a nonlinear Zener model[J]. Journal of Vibration and Shock, 2022, 41(12): 51-58 (in Chinese)
    [10] LUO R, SHI H L, GUO J Y, et al. A nonlinear rubber spring model for the dynamics simulation of a high-speed train[J]. Vehicle System Dynamics, 2020, 58(9): 1367-1384 doi: 10.1080/00423114.2019.1624788
    [11] PINTADO P, RAMIRO C, BERG M, et al. On the mechanical behavior of rubber springs for high speed rail vehicles[J]. Journal of Vibration and Control, 2018, 24(20): 4676-4688 doi: 10.1177/1077546317732206
    [12] DZIERŻEK S. Experiment-based modeling of cylindrical rubber bushings for the simulation of wheel suspension dynamic behavior[J]. SAE Transactions, 2000, 109(6): 78-85
    [13] OKUKA A S, ZORICA D. Fractional Burgers models in creep and stress relaxation tests[J]. Applied Mathematical Modelling, 2020, 77: 1894-1935 doi: 10.1016/j.apm.2019.09.035
    [14] 刘汝逾, 牛江川, 申永军, 等. 分数阶单自由度线性振子双侧对称碰撞振动分析[J]. 振动与冲击, 2021, 40(16): 20-28

    LIU R Y, NIU J C, SHEN Y J, et al. Analysis of bilateral symmetrical vibro-impact of a fractional-order linear single-degree-of-freedom oscillator[J]. Journal of Vibration and Shock, 2021, 40(16): 20-28 (in Chinese)
    [15] 隋鹏, 申永军, 杨绍普. 一种含惯容和接地刚度的动力吸振器参数优化[J]. 力学学报, 2021, 53(5): 1412-1422 doi: 10.6052/0459-1879-21-058

    SUI P, SHEN Y J, YANG S P. Parameters optimization of a dynamic vibration absorber with inerter and grounded stiffness[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1412-1422 (in Chinese) doi: 10.6052/0459-1879-21-058
    [16] WANG X R, HE T, SHEN Y J, et al. Parameters optimization and performance evaluation for the novel inerter-based dynamic vibration absorbers with negative stiffness[J]. Journal of Sound and Vibration, 2019, 463: 114941 doi: 10.1016/j.jsv.2019.114941
    [17] LITEWKA P, LEWANDOWSKI R. Nonlinear harmonically excited vibrations of plates with Zener material[J]. Nonlinear Dynamics, 2017, 89: 691-712 doi: 10.1007/s11071-017-3480-7
    [18] ANILKUMAR A, KARTIK V. Stability characteristics of multi-frequency parametrically-excited rotor-oscillator systems[J]. Journal of Sound and Vibration, 2021, 497: 115939 doi: 10.1016/j.jsv.2021.115939
    [19] 董自鑫, 桑松, 曹爱霞, 等. 单频与多频激励下深海TTR立管参激特性分析[J]. 中国造船, 2021, 62(1): 110-122 doi: 10.3969/j.issn.1000-4882.2021.01.011

    DONG Z X, SANG S, CAO A X, et al. Analysis of parametric excitation characteristics of deep-sea top tensioned riser under multi-frequency excitation[J]. Shipbuilding of China, 2021, 62(1): 110-122 (in Chinese) doi: 10.3969/j.issn.1000-4882.2021.01.011
    [20] PANIGRAHI B, POHIT G. Nonlinear dynamic response of open and breathing cracked functionally graded beam under single and multi-frequency excitation[J]. Engineering Structures, 2021, 242: 112437 doi: 10.1016/j.engstruct.2021.112437
    [21] ASKARI H, SAADATNIA Z, ESMAILZADEH E, et al. Multi-frequency excitation of stiffened triangular plates for large amplitude oscillations[J]. Journal of Sound and Vibration, 2014, 333(22): 5817-5835 doi: 10.1016/j.jsv.2014.06.026
    [22] 楼京俊, 张阳阳, 朱石坚. 螺旋桨弹性对推进轴系纵向振动特性影响研究[J]. 机械科学与技术, 2017, 36(11): 1684-1688

    LOU J J, ZHANG Y Y, ZHU S J. Impact of propeller elasticity on longitudinal vibration characteristics of propulsion shafting[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1684-1688 (in Chinese)
    [23] 刘海平, 申大山, 赵鹏鹏. 非线性三参数隔振器动力学特性研究[J]. 振动工程学报, 2021, 34(3): 490-498 doi: 10.16385/j.cnki.issn.1004-4523.2021.03.006

    LIU H P, SHEN D S, ZHAO P P. Dynamic performance of a three-parameter isolator with nonlinear characteristic[J]. Journal of Vibration Engineering, 2021, 34(3): 490-498 (in Chinese) doi: 10.16385/j.cnki.issn.1004-4523.2021.03.006
    [24] LI X Z, LIANG L, WANG D X. Vibration and noise characteristics of an elevated box girder paved with different track structures[J]. Journal of Sound and Vibration, 2018, 425: 21-40 doi: 10.1016/j.jsv.2018.03.031
  • 加载中
图(10)
计量
  • 文章访问数:  63
  • HTML全文浏览量:  42
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-01
  • 修回日期:  2022-01-04
  • 刊出日期:  2023-02-04

目录

    /

    返回文章
    返回