留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转子槽形结构对离心泵水力特性及压力脉动影响研究

柴博 董浩 李文华

柴博, 董浩, 李文华. 转子槽形结构对离心泵水力特性及压力脉动影响研究[J]. 机械科学与技术, 2022, 41(7): 1023-1030. doi: 10.13433/j.cnki.1003-8728.20220141
引用本文: 柴博, 董浩, 李文华. 转子槽形结构对离心泵水力特性及压力脉动影响研究[J]. 机械科学与技术, 2022, 41(7): 1023-1030. doi: 10.13433/j.cnki.1003-8728.20220141
CHAI Bo, DONG Hao, LI Wenhua. Influence of Rotor Groove Structure on Hydraulic Characteristics and Pressure Pulsation of Centrifugal Pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1023-1030. doi: 10.13433/j.cnki.1003-8728.20220141
Citation: CHAI Bo, DONG Hao, LI Wenhua. Influence of Rotor Groove Structure on Hydraulic Characteristics and Pressure Pulsation of Centrifugal Pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(7): 1023-1030. doi: 10.13433/j.cnki.1003-8728.20220141

转子槽形结构对离心泵水力特性及压力脉动影响研究

doi: 10.13433/j.cnki.1003-8728.20220141
基金项目: 

辽宁省教育厅2019年服务地方类项目 300219074

详细信息
    作者简介:

    柴博(1980-), 副教授, 硕士生导师, 研究方向为流体机械, 286393103@qq.com

  • 中图分类号: TG156

Influence of Rotor Groove Structure on Hydraulic Characteristics and Pressure Pulsation of Centrifugal Pump

  • 摘要: 为提高航空领域小型高转速离心泵的水力性能, 减轻重量并简化机械结构, 且具备更好的轴向力平衡能力, 设计一种新型单级小比转数转子槽形结构离心泵。搭建离心泵水力性能实验台, 研究不同工况下槽形结构对离心泵水力性能及压力脉动的影响, 并结合数值模拟对比分析。研究表明: 转子槽形结构的离心泵与传统离心泵相比, 出口压力、扬程、有效功率分别提升了约7.89%、7.53%、11.1%。实验与数值模拟分析在额定工况下的出口压力、扬程、有效功率误差均小于1.5%, 临界空化余量为1.488 m, 压力脉动总体幅值小于0.2, 且峰值发生在了叶轮2倍频附近。验证了高速小比转数离心泵电机转子上引入螺旋槽结构设计是合理的。
  • 图  1  两种不同循环方式离心泵

    图  2  转子槽形结构离心泵泵体结构示意图

    图  3  两种不同型号离心泵流体域模型

    图  4  网格无关性验证

    图  5  转子槽形结构离心泵各流体域网格

    图  6  不同流量下原型泵叶轮中截面静压云图

    图  7  不同流量下传统离心泵叶轮中截面静压云图

    图  8  离心泵试验装置图

    图  9  额定工况水力性能实验与模拟对比

    图  10  传统型与转子槽形离心泵在额定工况下水力性能对比

    图  11  设计工况下泵空化性能曲线

    图  12  不同NPSHa下的泵内空泡体积分布

    图  13  不同NPSHa下的泵内静压分布

    图  14  监测点设置

    图  15  Q=220 L/h设计工况下各监测点压力脉动时域图

    图  16  设计工况下各监测点压力脉动频谱图

    表  1  不同过流部件网格数量

    计算域 网格数/105
    转子流体域 5.29
    叶轮流体域 7.68
    蜗壳流体域 2.98
    进口段流体域 0.86
    交换孔流体域 2.84
    下载: 导出CSV
  • [1] 李海博. 单级屏蔽泵结构设计与性能分析[D]. 大连: 大连理工大学, 2018

    LI H B. The structural design and performance analysis of the single stage canned motor pump[D]. Dalian: Dalian University of Technology, 2018 (in Chinese)
    [2] 刘在伦, 芦维强, 赵伟国, 等. 离心泵平衡孔和背叶片对轴向力特性影响[J]. 排灌机械工程学报, 2019, 37(10): 834-840 https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201910003.htm

    LIU Z L, LU W Q, ZHAO W G, et al. Effect of balance holes and back blades on axial thrust of centrifugal pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(10): 834-840 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-PGJX201910003.htm
    [3] PATIL D, BHANDARI D, BHANDARI A, et al. Computational analysis and design improvement of an industrial centrifugal pump with experimental validation[J]. Journal of the Institution of Engineers (India): Series C, 2020, 101(3): 493-506 doi: 10.1007/s40032-020-00567-6
    [4] QI H Z, CAO L, YAN Z X, et al. Hydraulics and blading of centrifugal pump impellers: a systematic review and application[J]. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 2019, 43(1): 1-12
    [5] 常书平, 王永生. 基于CFD的混流泵空化特性研究[J]. 排灌机械工程学报, 2012, 30(2): 171-175+180 doi: 10.3969/j.issn.1674-8530.2012.02.010

    CHANG S P, WANG Y S. Cavitation performance research of mixed-flow pump based on CFD[J]. Journal of Drainage and Irrigation Machinery Engineering, 2012, 30(2): 171-175+180 (in Chinese) doi: 10.3969/j.issn.1674-8530.2012.02.010
    [6] 李社新, 金晶. 非结构网格离心泵全流场数值拟研究[J]. 机械科学与技术, 2016, 35(2): 210-215 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201602010.htm

    LI S X, JIN J. Numerical simulation of centrifugal pump flow field based on unstructured meshes[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(2): 210-215 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201602010.htm
    [7] 黄思, 桑迪科. 多级离心泵三维流场数值模拟性能预测[J]. 机械科学与技术, 2010, 29(6): 705-708 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201006003.htm

    HUANG S, SANG D K. Numerical simulation of the three-dimensional flow field in a multistage centrifugal pump and its performance prediction[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(6): 705-708 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201006003.htm
    [8] HE D H, ZHAO L, CHANG Z, et al. On the performance of a centrifugal pump under bubble inflow: Effect of gas-liquid distribution in the impeller[J]. Journal of Petroleum Science and Engineering, 2021, 203: 108587 doi: 10.1016/j.petrol.2021.108587
    [9] 梁武科, 何庆南, 董玮, 伟等. 高压离心泵进口压力与轴向力特性的关联性[J]. 机械科学与技术, 2020, 39(10): 1497-1504 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202010005.htm

    LIANG W K, HE Q N, DONG W, et al. Association between inlet pressure and axial force of a high pressure centrifugal pump[J]. Mechanical Science and Technology for Aerospace Engineering, 2020, 39(10): 1497-1504 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX202010005.htm
    [10] 朱艳姝, 朱石沙, 朱大洲, 等. 基于遗传算法和BP神经网络的离心泵性能预测[J]. 机械科学与技术, 2012, 31(8): 1274-1279 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201208017.htm

    ZHU Y S, ZHU S S, ZHU D Z, et al. Predicting performance of centrifugal pump by combining genetic algorithm with BP neural network[J]. Mechanical Science and Technology for Aerospace Engineering, 2012, 31(8): 1274-1279 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201208017.htm
    [11] 董言, 董玮, 黄梦旗, 等. 基于CFD的离心泵轴向力计算与平衡研究综述[J]. 水利与建筑工程学报, 2021, 19(1): 8-15 https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS202101002.htm

    DONG Y, DONG W, HUANG M Q, et al. A review of CFD based axial force calculation and balance of centrifugal Pump[J]. Journal of Water Resources and Architectural Engineering, 2021, 19(1): 8-15 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FSJS202101002.htm
    [12] 薛自华. 多级离心泵轴向力及平衡鼓尺寸计算研究[J]. 水泵技术, 2019(4): 23-25, 28 https://www.cnki.com.cn/Article/CJFDTOTAL-SBJS201904006.htm

    XUE Z H. Calculation of axial force and balancing drum dimension of multistage centrifugal pumps[J]. Pump Technology, 2019(4): 23-25, 28 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SBJS201904006.htm
    [13] 邓志强, 蒋佳睿, 刘小兵. 某离心泵内部流场非定常空化分析[J]. 水电能源科学, 2021, 39(6): 166-170 https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202106041.htm

    DENG Z Q, JIANG J R, LIU X B. Analysis of unsteady cavitation in a centrifugal Pump[J]. Water Resources and Power, 2021, 39(6): 166-170 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY202106041.htm
    [14] 俞田宝. 蜗壳式离心泵水力性能优化及压力脉动分析[D]. 镇江: 江苏大学, 2020

    YU T B. Hydraulic performance optimization of volute centrifugal pump and pressure fluctuation analysis[D]. Zhenjiang: Jiangsu University, 2020 (in Chinese)
    [15] 关醒凡, 鲁涛. 带导叶大型涡壳式泵模型设计与试验研究[J]. 水泵技术, 2019(5): 6-9+14 https://www.cnki.com.cn/Article/CJFDTOTAL-SBJS201905002.htm

    GUAN X F, LU T. Model design and experimental study of the large volute type pump with diffuser[J]. Pump Technology, 2019(5): 6-9+14 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SBJS201905002.htm
  • 加载中
图(16) / 表(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  52
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-18
  • 刊出日期:  2022-07-25

目录

    /

    返回文章
    返回