留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑最优方向匹配的高效走刀轨迹生成方法

金鑫 刘其广 吕杰 徐飞飞

金鑫, 刘其广, 吕杰, 徐飞飞. 考虑最优方向匹配的高效走刀轨迹生成方法[J]. 机械科学与技术, 2022, 41(8): 1211-1215. doi: 10.13433/j.cnki.1003-8728.20220030
引用本文: 金鑫, 刘其广, 吕杰, 徐飞飞. 考虑最优方向匹配的高效走刀轨迹生成方法[J]. 机械科学与技术, 2022, 41(8): 1211-1215. doi: 10.13433/j.cnki.1003-8728.20220030
JIN Xin, LIU Qiguang, LYU Jie, XU Feifei. An Efficient Tool Path Generation Method Considering Optimal-feed-direction Matching[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1211-1215. doi: 10.13433/j.cnki.1003-8728.20220030
Citation: JIN Xin, LIU Qiguang, LYU Jie, XU Feifei. An Efficient Tool Path Generation Method Considering Optimal-feed-direction Matching[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(8): 1211-1215. doi: 10.13433/j.cnki.1003-8728.20220030

考虑最优方向匹配的高效走刀轨迹生成方法

doi: 10.13433/j.cnki.1003-8728.20220030
基金项目: 

国家自然科学基金项目 91948203

详细信息
    作者简介:

    金鑫(1989-), 硕士, 研究方向为数控和运动控制技术, jinxin649@163.com

    通讯作者:

    刘其广, 高级工程师, 硕士, hebeiqig_liu@sina.com

  • 中图分类号: TG659

An Efficient Tool Path Generation Method Considering Optimal-feed-direction Matching

  • 摘要: 针对轨迹规划中依据等残留高度规则排列的轨迹往往偏离最优走刀方向的难题, 提出一种兼顾方向匹配与走刀行距的高效走刀轨迹生成方法。基于空间曲面与其参数域的对应关系, 采样得到不同节点处的最优走刀方向, 并结合双线性插值, 实现曲面上任意位置处最优走刀方向的快速计算。从最优方向匹配的需求出发, 以轨迹单位切向表征其实际方向, 建立与理想方向偏离最小的优化函数, 通过设定不同加工行距, 偏置得到目标轨迹的限制区间, 利用遗传算法, 搜寻得到目标轨迹的最优表达。算例仿真表明, 所提方法可在轨迹高效排布的基础上, 显著提高与最优方向的匹配度, 继而提升机床的切削性能。
  • 图  1  单点处最优方向选择

    图  2  参数域上的双线性插值

    图  3  轨迹的等残留高度原则偏置

    图  4  偏置生成优化区间

    图  5  栅格采样和离散方向场构建

    图  6  3种方法规划的轨迹

    图  7  3种方法的轨迹在不同刀位处的方向偏差

    图  8  3种轨迹的仿真加工结果

    表  1  轨迹信息汇总表

    轨迹类型 长度/ mm 均值/ (°) 中位数/ (°) 标准差/ (°) 最大值/ (°)
    图 6a) 6 031.71 2.81 1.77 3.16 19.49
    图 6b) 5 647.53 5.21 3.51 5.47 37.82
    图 6c) 6 299.74 92.87 94.11 11.97 121.12
    下载: 导出CSV
  • [1] LIN Z W, FU J Z, SHEN H Y, et al. A generic uniform scallop tool path generation method for five-axis machining of freeform surface[J]. Computer-Aided Design, 2014, 56: 120-132 doi: 10.1016/j.cad.2014.06.010
    [2] 高军, 沈兵, 吴联银, 等. 一种新的数控加工刀位轨迹排列算法的研究[J]. 机械科学与技术, 2000, 19(4): 595-596 doi: 10.3321/j.issn:1003-8728.2000.04.029

    GAO J, SHEN B, WU L Y, et al. On pre-controlled optimal synthesis of tool-path arranging for CNC machining based on curvature catering method[J]. Mechanical Science and Technology for Aerospace Engineering, 2000, 19(4): 595-596 (in Chinese) doi: 10.3321/j.issn:1003-8728.2000.04.029
    [3] SU C, JIANG X, HUO G Y, et al. Initial tool path selection of the iso-scallop method based on offset similarity analysis for global preferred feed directions matching[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(7-8): 2675-2687 doi: 10.1007/s00170-019-04789-6
    [4] CHIOU C J, LEE Y S. A machining potential field approach to tool path generation for multi-axis sculptured surface machining[J]. Computer-Aided Design, 2002, 34(5): 357-371 doi: 10.1016/S0010-4485(01)00102-6
    [5] SUN Y W, SUN S X, XU J T, et al. A unified method of generating tool path based on multiple vector fields for CNC machining of compound NURBS surfaces[J]. Computer-Aided Design, 2017, 91: 14-26 doi: 10.1016/j.cad.2017.04.003
    [6] XU K, LUO M, TANG K. Machine based energy-saving tool path generation for five-axis end milling of freeform surfaces[J]. Journal of Cleaner Production, 2016, 139: 1207-1223 doi: 10.1016/j.jclepro.2016.08.140
    [7] KIM T, SARMA S E. Toolpath generation along directions of maximum kinematic performance: a first cut at machine-optimal paths[J]. Computer-Aided Design, 2002, 34(6): 453-468 doi: 10.1016/S0010-4485(01)00116-6
    [8] XU K, TANG K. Five-axis tool path and feed rate optimization based on the cutting force-area quotient potential field[J]. The International Journal of Advanced Manufacturing Technology, 2014, 75(9-12): 1661-1679 doi: 10.1007/s00170-014-6221-9
    [9] MA J W, SONG D N, JIA Z Y, et al. Tool-path planning with constraint of cutting force fluctuation for curved surface machining[J]. Precision Engineering, 2018, 51: 614-624 doi: 10.1016/j.precisioneng.2017.11.002
    [10] HUO G Y, JIANG X, SU C, et al. CNC tool path generation for freeform surface machining based on preferred feed direction field[J]. International Journal of Precision Engineering and Manufacturing, 2019, 20(5): 777-790 doi: 10.1007/s12541-019-00084-2
    [11] 徐金亭, 牛金波, 陈满森, 等. 精密复杂曲面零件多轴数控加工技术研究进展[J]. 航空学报, 2021, 42(10): 24-47 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202110004.htm

    XU J T, NIU J B, CHEN M S, et al. Research progress in multi-axis CNC machining of precision complex curved parts[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(10): 24-47 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202110004.htm
    [12] 孙玉文, 束长林, 刘健. 基于矢量分析的数控加工轨迹设计方法研究[J]. 机械工程学报, 2005, 41(3): 160-164+170 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200503030.htm

    SUN Y W, SHU C L, LIU J. Vector analysis based toolpath generation for precision surface machining[J]. Chinese Journal of Mechanical Engineering, 2005, 41(3): 160-164+170 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200503030.htm
    [13] 李万军, 赵东标, 牛敏. 基于遗传算法的笔式加工刀具路径优化[J]. 机械科学与技术, 2010, 29(5): 646-650 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201005020.htm

    LI W J, ZHAO D B, NIU M. Optimization of pencil-cut tool paths using a genetic algorithm[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(5): 646-650 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201005020.htm
    [14] KUMAZAWA G H, FENG H Y, BARAKCHI FARD M J. Preferred feed direction field: A new tool path generation method for efficient sculptured surface machining[J]. Computer-Aided Design, 2015, 67-68: 1-12 doi: 10.1016/j.cad.2015.04.011
    [15] LIU X, LI Y G, MA S B, et al. A tool path generation method for freeform surface machining by introducing the tensor property of machining strip width[J]. Computer-Aided Design, 2015, 66: 1-13 doi: 10.1016/j.cad.2015.03.003
    [16] 赵世田, 赵东标, 付莹莹. 自由曲面加工刀具路径生成高精度变步长算法研究[J]. 机械科学与技术, 2010, 29(1): 32-35 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201001009.htm

    ZHAO S T, ZHAO D B, FU Y Y. High Precision algorithm of variable forward step planning for tool path generation of freeform surface[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(1): 32-35 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201001009.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  44
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-19
  • 刊出日期:  2022-08-25

目录

    /

    返回文章
    返回