留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单晶硅的放电加工条件与试验研究

辛彬 刘巍 宋玉贵

辛彬,刘巍,宋玉贵. 单晶硅的放电加工条件与试验研究[J]. 机械科学与技术,2022,41(3):421-432 doi: 10.13433/j.cnki.1003-8728.20200618
引用本文: 辛彬,刘巍,宋玉贵. 单晶硅的放电加工条件与试验研究[J]. 机械科学与技术,2022,41(3):421-432 doi: 10.13433/j.cnki.1003-8728.20200618
XIN Bin, LIU Wei, SONG Yugui. Definition and Experimental Research on Electrical Discharge Machining Conditions of Single Crystal Silicon[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 421-432. doi: 10.13433/j.cnki.1003-8728.20200618
Citation: XIN Bin, LIU Wei, SONG Yugui. Definition and Experimental Research on Electrical Discharge Machining Conditions of Single Crystal Silicon[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(3): 421-432. doi: 10.13433/j.cnki.1003-8728.20200618

单晶硅的放电加工条件与试验研究

doi: 10.13433/j.cnki.1003-8728.20200618
基金项目: 国家自然科学基金项目(11805150)与陕西省教育厅基金项目(20JK0691)
详细信息
    作者简介:

    辛彬(1984−),讲师,博士研究生,研究方向为脆硬性材料加工与过程控制,xinbin1227@163.com

  • 中图分类号: TG661

Definition and Experimental Research on Electrical Discharge Machining Conditions of Single Crystal Silicon

  • 摘要: 针对某类牌号的单晶硅材料在放电加工系统中无法实现放电的问题,本文提出一种单晶硅放电加工临界电导率σ的界定方法,系统性地揭示了单晶硅的电导率σ是影响放电通道击穿并形成火花放电的根本原因。结合半导体物理理论,系统性地分析了单晶硅放电加工系统中从极间电场的建立到极间等离子体放电通道的形成过程;引入阴极场致电子发射理论,建立了单晶硅放电加工系统极间电流密度J与单晶硅电导率σ的物理模型,仿真分析了临界电流密度J与单晶硅电导率σ之间的关系;结合实际加工过程对模型进行了验证,验证结果表明该模型可确定单晶硅放电加工的临界电导率,以此界定单晶硅的可加工性。
  • 图  1  P型半导体结构图

    图  2  N型半导体结构图

    图  3  能带示意图

    图  4  半导体能带示意图

    图  5  单晶硅EDM系统组成

    图  6  N型单晶硅功函数示意图

    图  7  放电通道击穿过程

    图  8  电流密度与单晶硅电导率的关系曲线

    图  9  EDM试验设备

    图  10  临界击穿电流与单晶硅电导率的关系

    图  11  临界击穿电流与单晶硅电导率的关系(局部放大图)

    图  12  极间电压与回路电流波形(σ = 0.06 S/cm)

    图  13  临界击穿电流与单晶硅电导率的关系曲线

    图  14  MIS物理模型

    图  15  电导率σ = 0.06 S/cm的试验结果

    图  16  极间电压与回路电流波形(σ = 0.11 S/cm)

    图  17  电导率σ = 0.11 S/cm的试验结果

    图  18  EDS能谱分析结果

    图  19  正常放电电压电流关系

    表  1  模型参数

    参数数值 参数数值
    q 1.602×10−19 C pi 1.5×1010 cm−3
    μn 90 cm2/(V·s) U 100 V
    T 300 K r 1 μm
    k0 1.3806505×1023 J/K χ 4.05 eV
    a 0.51 μm−1 Ec 1.12 eV
    下载: 导出CSV
  • [1] ZHAO Y W, CHANG L. A micro-contact and wear model for chemical–mechanical polishing of silicon wafers[J]. Wear, 2002, 252(3-4): 220-226 doi: 10.1016/S0043-1648(01)00871-7
    [2] DIBITONTO D D, EUBANK P T, PATEL M R, et al. Theoretical models of the electrical discharge machining process. I A simple cathode erosion model[J]. Journal of Applied Physics, 1989, 66(9): 4095-4103 doi: 10.1063/1.343994
    [3] MAHAPATRA S S, PATNAIK A. Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method[J]. The International Journal of Advanced Manufacturing Technology, 2007, 34(9-10): 911-925 doi: 10.1007/s00170-006-0672-6
    [4] PATEL D V, VAGHMARE V R. A review of recent work in wire electrical discharge machining (WEDM)[J]. International Journal of Engineering Researchand Applications, 2013, 3(3): 805-816
    [5] MAHER I, SARHAN A A D, HAMDI M. Review of improvements in wire electrode properties for longer working time and utilization in wire EDM machining[J]. The International Journal of Advanced Manufacturing Technology, 2015, 76(1-4): 329-351 doi: 10.1007/s00170-014-6243-3
    [6] RAKWAL D, BAMBERG E. Slicing, cleaning and kerf analysis of germanium wafers machined by wire electrical discharge machining[J]. Journal of Materials Processing Technology, 2009, 209(8): 3740-3751 doi: 10.1016/j.jmatprotec.2008.08.027
    [7] TAKINO H, ICHINOHE T, TANIMOTO K, et al. Cutting of polished single-crystal silicon by wire electrical discharge machining[J]. Precision Engineering, 2004, 28(3): 314-319 doi: 10.1016/j.precisioneng.2003.12.002
    [8] TAKINO H, ICHINOHE T, TANIMOTO K, et al. High-quality cutting of polished single-crystal silicon by wire electrical discharge machining[J]. Precision Engineering, 2005, 29(4): 423-430 doi: 10.1016/j.precisioneng.2004.12.004
    [9] TAKINO H, ICHINOHE T, TANIMOTO K, et al. Contouring of polished single-crystal silicon plates by wire electrical discharge machining[J]. Precision Engineering, 2007, 31(4): 358-363 doi: 10.1016/j.precisioneng.2007.03.003
    [10] DAUD N D, ABUZAITER A, LEOW P L, et al. The effects of the silicon wafer resistivity on the performance of microelectrical discharge machining[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(1-4): 257-266 doi: 10.1007/s00170-017-1190-4
    [11] JOSHI K, ANANYA A, BHANDARKAR U, et al. Ultra thin silicon wafer slicing using wire-EDM for solar cell application[J]. Materials & Design, 2017, 124: 158-170
    [12] YU P H, LEE H K, LIN Y X, et al. Machining characteristics of polycrystalline silicon by wire electrical discharge machining[J]. Materials and Manufacturing Processes, 2011, 26(12): 1443-1450 doi: 10.1080/10426914.2010.544808
    [13] YU P H, LIN Y X, LEE H K, et al. Improvement of wire electrical discharge machining efficiency in machining polycrystalline silicon with auxiliary-pulse voltage supply[J]. The International Journal of Advanced Manufacturing Technology, 2011, 57(9-12): 991-1001 doi: 10.1007/s00170-011-3350-2
    [14] CHEN H R, LIU Z D, HUANG S J, et al. Study of the mechanism of multi-channel discharge in semiconductor processing by WEDM[J]. Materials Science in Semiconductor Processing, 2015, 32: 125-130 doi: 10.1016/j.mssp.2014.12.061
    [15] LUO Y F, CHEN C G, TONG Z F. Investigation of silicon wafering by wire EDM[J]. Journal of Materials Science, 1992, 27(21): 5805-5810 doi: 10.1007/BF01119742
    [16] LIU Z D, CHEN H R, PAN H J, et al. Automatic control of WEDM servo for silicon processing using current pulse probability detection[J]. The International Journal of Advanced Manufacturing Technology, 2014, 76(1-4): 367-374
    [17] 刘恩科, 朱秉升, 罗晋生, 等. 半导体物理学[M]. 4版. 北京: 国防工业出版社, 2010

    LIU E K, ZHU B S, LUO J S, et al. Semiconductor physics[M]. 4th ed. Beijing: National Defense Industry Press, 2010 (in Chinese)
    [18] 常伟杰, 陈远龙, 张建华, 等. 电火花加工单脉冲放电通道直径扩展规律研究[J]. 机械工程学报, 2016, 52(9): 208-212 doi: 10.3901/JME.2016.09.208

    CHANG W J, CHEN Y L, ZHANG J H, et al. Single pulse discharge channel expansion laws of EDM[J]. Journal of Mechanical Engineering, 2016, 52(9): 208-212 (in Chinese) doi: 10.3901/JME.2016.09.208
    [19] WEINGÄRTNER E, KUSTER F, WEGENER K. Modeling and simulation of electrical discharge machining[J]. Procedia CIRP, 2012, 2: 74-78 doi: 10.1016/j.procir.2012.05.043
  • 加载中
图(19) / 表(1)
计量
  • 文章访问数:  40
  • HTML全文浏览量:  1
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-08
  • 录用日期:  2021-11-18
  • 刊出日期:  2022-05-11

目录

    /

    返回文章
    返回