留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微孔超精密加工研究进展

武晓龙 马玉平 王海航 韩源

武晓龙, 马玉平, 王海航, 韩源. 微孔超精密加工研究进展[J]. 机械科学与技术, 2021, 40(12): 1913-1928. doi: 10.13433/j.cnki.1003-8728.20200588
引用本文: 武晓龙, 马玉平, 王海航, 韩源. 微孔超精密加工研究进展[J]. 机械科学与技术, 2021, 40(12): 1913-1928. doi: 10.13433/j.cnki.1003-8728.20200588
WU Xiaolong, MA Yuping, WANG Haihang, HAN Yuan. Progress in Ultra-precision Machining of Micro Hole[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(12): 1913-1928. doi: 10.13433/j.cnki.1003-8728.20200588
Citation: WU Xiaolong, MA Yuping, WANG Haihang, HAN Yuan. Progress in Ultra-precision Machining of Micro Hole[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(12): 1913-1928. doi: 10.13433/j.cnki.1003-8728.20200588

微孔超精密加工研究进展

doi: 10.13433/j.cnki.1003-8728.20200588
基金项目: 

安徽省自然科学基金项目 1908085ME129

安徽省自然科学基金项目 1208085ME63

安徽省教育厅自然科学基金项目 KJ2015A050

安徽省教育厅自然科学基金项目 KJ2015A013

详细信息
    作者简介:

    武晓龙(1993-), 硕士研究生, 研究方向为超声振动辅助飞秒激光微孔加工, wuxiaolong0280@163.com

    通讯作者:

    马玉平, 教授, 硕士生导师, 博士, jessymayp@ahjzu.edu.cn

  • 中图分类号: TH16;TG661

Progress in Ultra-precision Machining of Micro Hole

  • 摘要: 近年来,电子、医药、航空航天等行业对高质量微孔结构的需求量日益增加,但加工精度低、加工半径尺寸受限、在复杂零件上加工困难等问题限制了其应用。传统微孔加工方法已无法满足高加工质量要求,超精密微孔加工方式仍有许多问题亟待解决。因此,本文对电化学、微细电火花、超声波、飞秒激光、复合加工等超精密加工方式在微孔加工中存在的问题进行了总结,并对不同的超精密加工方法的特点和相应问题的研究进展进行了综述,最后对微孔加工方式未来的发展趋势进行了展望。
  • 图  1  电化学加工原理[2]

    图  2  电解质浓度对微孔锥度和过切的影响[8]

    图  3  不同形状的电极[11]

    图  4  电极的加工示意图

    图  5  无磁场与0.1 T磁场[13]

    图  6  加工电流随电极间隙变化的过程及控制流程图[17]

    图  7  微细电火花加工原理图

    图  8  利用超声圆振动电极进行微孔加工结果[29]

    图  9  超声波微孔加工原理图[33]

    图  10  旋转超声加工机理

    图  11  激光与电子、晶格相互作用模型[48]

    图  12  螺旋扫描加工的微孔[53]

    图  13  微孔扫描电镜图[58]

    图  14  无超声振动辅助与有超声振动辅助[74]

    图  15  不同电极加工微孔锥度[81]

    图  16  有无水基超声振动辅助下的微孔[91]

    表  1  旋转超声钻削加工性能的影响[36]

    钻削参数 加工性能
    主轴转速 -
    刀具进给速率、材料和类型 材料去除率
    超声功率、振幅和频率 表面粗糙度
    切削液压力、切削深度和宽度 刀具磨损
    磨料粒度和浓度 加工精度
    切削液类型 -
    下载: 导出CSV

    表  2  微孔超精密加工方式比较[33, 63-66]

    名称 电化学加工 微细电火花加工 超声波加工 飞秒激光加工
    常见孔径/μm >100 5~100 100~500 25~400
    常见深径比 8∶1 10∶1 10∶1 10∶1
    材料去除率 最慢 最快
    刀具磨损
    表面粗糙度 较粗糙 粗糙 最光滑 最粗糙
    成本 设置成本低 工具电极成本高 设备成本高 设备昂贵、维护成本高
    排屑方式 溶于电解液 电介质熔化和排出 悬浮液带走 气化、蒸发
    可加工材料 导电材料 导电材料 硬度大于40HRC的材料 非反射表面工件的任何材料
    孔表面损伤 无热影响区和毛刺 无残余应力、有热影响区和重铸层 无残余应力和重铸层 热影响区小、无重铸层和微裂纹
    能否加工复杂形状零件
    优点 更好的表面质量、设备成本低、无刀具磨损、环境友好、比电火花加工快 可在复杂形状面上加工微孔、可加工难加工材料、电极可用性 孔表面质量高、较低的接触温度、容易排屑 效率高、高深径比、局部处理能力、精密度高与光刻相比成本低
    缺点 刀具绝缘困难、易出现杂散腐蚀、不适合复杂形状 对材料去除机制的控制较少、加工稳定性差、刀具磨损快、电极成本高、加工效率低 加工效率低、不适合复杂形状零件加工 孔质量和圆度差、锥度大、生产成本高、设备昂贵
    下载: 导出CSV

    表  3  有无超声振动辅助的加工时间[71]

    试验 超声振动辅助电火花加工 无超声振动辅助电火花加工
    1 6∶54∶50 2∶29∶27
    2 4∶57∶30 1∶11∶10
    3 7∶16∶40 4∶19∶40
    下载: 导出CSV

    表  4  工作液种类对微孔加工的影响[77]

    工作液种类 入口尺寸/mm 出口尺寸/mm 表面粗糙度/ Ra/μm 表面重铸层/mm
    NaCl溶液 1.054 0.860 2.4 0.012
    NaNO3溶液 0.99 0.845 3.6 0.019
    NaClO3及其混合溶液 0.95 0.85 2.7 0.014
    下载: 导出CSV

    表  5  峰值电压对微孔加工的影响[77]

    峰值电压/V 入口尺寸/mm 出口尺寸/mm 表面粗糙度/ Ra/m 表面重铸层/mm
    100 0.99 0.86 2.9 0.021
    80 0.97 0.86 2.8 0.017
    60 0.95 0.85 2.6 0.014
    50 0.94 0.85 2.4 0.014
    下载: 导出CSV
  • [1] KUMAR N, MANDAL N, DAS A K. Micro-machining through electrochemical discharge processes: a review[J]. Materials and Manufacturing Processes, 2020, 35(4): 363-404 doi: 10.1080/10426914.2020.1711922
    [2] KEERTHIVASAN T, KAUSHIK P, MIRUNALINI P, et al. Design and analysis of erosion in electrochemical machining tool[J]. Materials Today: Proceedings, 2021, 37: 182-186 doi: 10.1016/j.matpr.2020.05.012
    [3] GEETHAPRIYAN T, KALAICHELVAN K, MUTHURAMALINGAM T. Multi performance optimization of electrochemical micro-machining process surface related parameters on machining inconel 718 using taguchi-grey relational analysis[J]. La Metallurgia Italiana, 2016(4): 13-19
    [4] MANNA A, MALIK A. Micro-drilling of Al/Al2O3-MMC on developed ECMM[C]//Proceedings of the World Congress on Engineering, 2016. London: WCE, 2016: 1-6
    [5] LIU G D, LI Y, KONG Q C, et al. Selection and optimization of electrolyte for micro electrochemical machining on stainless steel 304[J]. Procedia CIRP, 2016, 42: 412-417 doi: 10.1016/j.procir.2016.02.223
    [6] THANIGAIVELAN R, ARUNACHALAM R, KUMAR M, et al. Performance of electrochemical micromachining of copper through infrared heated electrolyte[J]. Materials and Manufacturing Processes, 2018, 33(4): 383-389 doi: 10.1080/10426914.2017.1279304
    [7] KHUNDRAKPAM N S, BRAR G S, DEVI M B. Optimizing the process parameters of ECM using Taguchi method[J]. Materials Today: Proceedings, 2020, 26: 1373-1379 doi: 10.1016/j.matpr.2020.02.278
    [8] FAN Z W, HOURNG L W. Electrochemical micro-drilling of deep holes by rotational cathode tools[J]. The International Journal of Advanced Manufacturing Technology, 2011, 52(5-8): 555-563 doi: 10.1007/s00170-010-2744-x
    [9] 唐伟东. 基于电化学放电效应的微小孔加工技术[D]. 上海: 上海交通大学, 2019

    TANG W D. Micro hole machining technology based on the electrochemical discharge effect[D]. Shanghai: Shanghai Jiao Tong University, 2019 (in Chinese)
    [10] WANG M H, ZHANG Y B, HE Z W, et al. Deep micro-hole fabrication in EMM on stainless steel using disk micro-tool assisted by ultrasonic vibration[J]. Journal of Materials Processing Technology, 2016, 229: 475-483 doi: 10.1016/j.jmatprotec.2015.10.004
    [11] RAHMAN Z, DAS A K, CHATTOPADHYAYA S. Microhole drilling through electrochemical processes: a review[J]. Materials and Manufacturing Processes, 2018, 33(13): 1379-1405 doi: 10.1080/10426914.2017.1401721
    [12] LIU G D, LI Y, KONG Q C, et al. Silicon-based tool electrodes for micro electrochemical machining[J]. Precision Engineering, 2018, 52: 425-433 doi: 10.1016/j.precisioneng.2018.02.003
    [13] ZHANG C F, ZHENG P X, LIANG R Y, et al. Effects of a magnetic field on the machining accuracy for the electrochemical drilling of micro holes[J]. International Journal of Electrochemical Science, 2020, 15: 1148-1159
    [14] WANG J, CHEN W, GAO F, et al. Ultrasonically assisted electrochemical micro drilling with sidewall-insulated electrode[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, 230(3): 466-474 doi: 10.1177/0954405414555740
    [15] WANG X D, QU N S, FANG X L, et al. Electrochemical drilling with constant electrolyte flow[J]. Journal of Materials Processing Technology, 2016, 238: 1-7 doi: 10.1016/j.jmatprotec.2016.06.033
    [16] BHATTACHARYYA B, MUNDA J, MALAPATI M. Advancement in electrochemical micro-machining[J]. International Journal of Machine Tools and Manufacture, 2004, 44(15): 1577-1589 doi: 10.1016/j.ijmachtools.2004.06.006
    [17] LU Y H, LIU K, ZHAO D B. Experimental investigation on monitoring interelectrode gap of ECM with six-axis force sensor[J]. The International Journal of Advanced Manufacturing Technology, 2011, 55(5): 565-572
    [18] 李晶, 陈湾湾, 朱永伟. 超声振动辅助电解加工成形规律研究及试验[J]. 现代制造工程, 2020(8): 13-19 https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY202008004.htm

    LI J, CHEN W W, ZHU Y W. Study and experiment of forming law in ultrasonic assisted electrochemical machining[J]. Modern Manufacturing Engineering, 2020(8): 13-19 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXGY202008004.htm
    [19] EGASHIRA K, HAYASHI A, HIRAI Y, et al. Drilling of microholes using electrochemical machining[J]. Precision Engineering, 2018, 54: 338-343 doi: 10.1016/j.precisioneng.2018.07.002
    [20] LI Y, ZHENG Y F, YANG G, et al. Localized electrochemical micromachining with gap control[J]. Sensors and Actuators A: Physical, 2003, 108(1-3): 144-148 doi: 10.1016/S0924-4247(03)00371-6
    [21] NIRALA C K, SAHA P. Precise μEDM-drilling using real-time indirect tool wear compensation[J]. Journal of Materials Processing Technology, 2017, 240: 176-189 doi: 10.1016/j.jmatprotec.2016.09.024
    [22] BELLOTTI M, QIAN J, REYNAERTS D. Self-tuning breakthrough detection for EDM drilling micro holes[J]. Journal of Manufacturing Processes, 2020, 57: 630-640 doi: 10.1016/j.jmapro.2020.07.031
    [23] SINGH A K, PATOWARI P K, DESHPANDE N V. Experimental analysis of reverse micro-EDM for machining microtool[J]. Materials and Manufacturing Processes, 2016, 31(4): 530-540 doi: 10.1080/10426914.2015.1070426
    [24] UHLMANN E, SCHIMMELPFENNIG T M, PERFILOV I, et al. Comparative analysis of dry-EDM and conventional EDM for the manufacturing of micro holes in Si3N4-TiN[J]. Procedia CIRP, 2016, 42: 173-178 doi: 10.1016/j.procir.2016.02.214
    [25] DONG S L, WANG Z L, WANG Y K, et al. Micro-EDM drilling of high aspect ratio micro-holes and in situ surface improvement in C17200 beryllium copper alloy[J]. Journal of Alloys and Compounds, 2017, 727: 1157-1164 doi: 10.1016/j.jallcom.2017.08.162
    [26] 储召良, 赵万生, 顾琳. 抬刀运动对电火花加工电蚀产物浓度的影响[J]. 机械工程学报, 2013, 49(11): 185-192 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201311026.htm

    CHU Z L, ZHAO W S, GU L. Effect of electrode jump motion on machining debris concentration[J]. Journal of Mechanical Engineering, 2013, 49(11): 185-192 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201311026.htm
    [27] LI G D, NATSU W, YU Z Y. Study on quantitative estimation of bubble behavior in micro hole drilling with EDM[J]. International Journal of Machine Tools and Manufacture, 2019, 146: 103437 doi: 10.1016/j.ijmachtools.2019.103437
    [28] PLAZA S, SANCHEZ J A, PEREZ E, et al. Experimental study on micro EDM-drilling of Ti6Al4V using helical electrode[J]. Precision Engineering, 2014, 38(4): 821-827 doi: 10.1016/j.precisioneng.2014.04.010
    [29] LI Z K, TANG J J, BAI J C. A novel micro-EDM method to improve microhole machining performances using ultrasonic circular vibration (UCV) electrode[J]. International Journal of Mechanical Sciences, 2020, 175: 105574 doi: 10.1016/j.ijmecsci.2020.105574
    [30] KLIUEV M, MARADIA U, WEGENER K. EDM drilling of non-conducting materials in deionised water[J]. Procedia CIRP, 2018, 68: 11-16 doi: 10.1016/j.procir.2017.12.014
    [31] BILAL A, JAHAN M P, TALAMONA D, et al. Electro-discharge machining of ceramics: a review[J]. Micromachines, 2018, 10(1): 10 doi: 10.3390/mi10010010
    [32] 缪兴华, 汪炜. 微细超声加工研究现状[J]. 航空制造技术, 2017(20): 16-27 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201720004.htm

    MIAO X H, WANG W. Current research on micro ultrasonic machining[J]. Aeronautical Manufacturing Technology, 2017(20): 16-27 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201720004.htm
    [33] SINGH P, PRAMANIK A, BASAK A K, et al. Developments of non-conventional drilling methods-a review[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5-6): 2133-2166 doi: 10.1007/s00170-019-04749-0
    [34] NATH C, LIM G C, ZHENG H Y. Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics[J]. Ultrasonics, 2012, 52(5): 605-613 doi: 10.1016/j.ultras.2011.12.007
    [35] CHEN S, ZOU P, WU H, et al. Mechanism of chip formation in ultrasonic vibration drilling and experimental research[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(15): 5214-5226 doi: 10.1177/0954406219848464
    [36] SINGH R P, SINGHAL S. Rotary ultrasonic machining: a review[J]. Materials and Manufacturing Processes, 2016, 31(14): 1795-1824 doi: 10.1080/10426914.2016.1140188
    [37] CONG W L, PEI Z J, FENG Q, et al. Rotary ultrasonic machining of CFRP: a comparison with twist drilling[J]. Journal of Reinforced Plastics and Composites, 2012, 31(5): 313-321 doi: 10.1177/0731684411427419
    [38] FERNANDO P K S C, PEI Z J, ZHANG M, et al. Rotary ultrasonic machining of carbon fiber reinforced plastics: a design of experiment[C]//ASME 2015 International Manufacturing Science and Engineering Conference. Charlotte: ASME, 2015: 1-9
    [39] NING F, CONG W L. Rotary ultrasonic machining of CFRP: design of experiment with a cutting force model[C]//ASME 2015 International Manufacturing Science and Engineering Conference. Charlotte: ASME, 2015: 1-9
    [40] LYU D X. Influences of high-frequency vibration on tool wear in rotary ultrasonic machining of glass BK7[J]. The International Journal of Advanced Manufacturing Technology, 2016, 84(5-8): 1443-1455
    [41] SHARMA A, JAIN V, GUPTA D. Characterization of chipping and tool wear during drilling of float glass using rotary ultrasonic machining[J]. Measurement, 2018, 128: 254-263 doi: 10.1016/j.measurement.2018.06.040
    [42] 刘凡. 旋转超声磨削钛合金的磨削力与工具磨损研究[D]. 成都: 西南交通大学, 2017

    LIU F. Tool wear and grinding force in Rotary ultrasonic machining of Titanium alloy[D]. Chengdu: Southwest Jiaotong University, 2017 (in Chinese)
    [43] PEI Z J, FERREIRA P M, HASELKORN M. Plastic flow in rotary ultrasonic machining of ceramics[J]. Journal of Materials Processing Technology, 1995, 48(1-4): 771-777 doi: 10.1016/0924-0136(94)01720-L
    [44] SINGH R P, SINGHAL S. Rotary ultrasonic machining of macor ceramic: an experimental investigation and microstructure analysis[J]. Materials and Manufacturing Processes, 2017, 32(9): 927-939 doi: 10.1080/10426914.2016.1198033
    [45] TESFAY H D, XU Z, LI Z C. Ultrasonic vibration assisted grinding of bio-ceramic materials: an experimental study on edge chippings with Hertzian indentation tests[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(9-12): 3483-3494 doi: 10.1007/s00170-015-8326-1
    [46] WANG H, NING F D, LI Y C, et al. Scratching-induced surface characteristics and material removal mechanisms in rotary ultrasonic surface machining of CFRP[J]. Ultrasonics, 2019, 97: 19-28 doi: 10.1016/j.ultras.2019.04.004
    [47] 杜坤, 李晓炜, 杨炳东, 等. 飞秒激光非金属微孔加工研究进展[J]. 激光与光电子学进展, 2020, 57(11): 111417 https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202011017.htm

    DU K, LI X W, YANG B D, et al. Research progress of femtosecond laser microhole drilling on non-metallic materials[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111417 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ202011017.htm
    [48] CHICHKOV B N, MOMMA C, NOLTE S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115 doi: 10.1007/BF01567637
    [49] JIANG L, TSAI H L. Modeling of ultrashort laser pulse-train processing of metal thin films[J]. International Journal of Heat and Mass Transfer, 2007, 50(17-18): 3461-3470 doi: 10.1016/j.ijheatmasstransfer.2007.01.049
    [50] POVARNITSYN M E, FOKIN V B, LEVASHOV P R. Microscopic and macroscopic modeling of femtosecond laser ablation of metals[J]. Applied Surface Science, 2015, 357: 1150-1156 doi: 10.1016/j.apsusc.2015.09.131
    [51] GAKOVIĆ B, PETROVIĆ S, ALBU C, et al. Precise femtosecond laser crater fabrication in hard nanolayered AlTiN/TiN coating on steel substrate[J]. Optics & Laser Technology, 2017, 89: 200-207
    [52] 刘璇, 宋立军. 飞秒激光叩击式微孔加工的实验研究[J]. 应用激光, 2019, 39(6): 980-986 https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201906012.htm

    LIU X, SONG L J. Experimental study on femtosecond laser percussion micro-hole drilling[J]. Applied Laser, 2019, 39(6): 980-986 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201906012.htm
    [53] JAHNS D, KASZEMEIKAT T, MUELLER N, et al. Laser trepanning of stainless steel[J]. Physics Procedia, 2013, 41: 630-635 doi: 10.1016/j.phpro.2013.03.126
    [54] 王锋, 罗建军, 李明. 飞秒激光高精细加工柴油机喷油嘴倒锥孔法[J]. 光子学报, 2014, 43(4): 0414003 https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201404026.htm

    WANG F, LUO J J, LI M. High-precision method of machining taper holes of diesel engine nozzle with femtosecond laser[J]. Acta Photonica Sinica, 2014, 43(4): 0414003 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GZXB201404026.htm
    [55] LEE H M, CHOI J H, MOON S J. Determining the machining parameters for femtosecond laser helical drilling of aluminosilicate glass substrate[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(7): 923-930 doi: 10.1007/s12541-017-0109-1
    [56] LU C S, DUAN W Q, WANG K D, et al. Experiments of drilling micro-holes on superalloy with thermal barrier coatings by using femtosecond laser[J]. Ferroelectrics, 2020, 564(1): 37-51 doi: 10.1080/00150193.2020.1761700
    [57] LI Q S, SUN X F, ZHAO W Q, et al. Processing of a large-scale microporous group on copper foil current collectors for lithium batteries using femtosecond laser[J]. Advanced Engineering Materials, 2020, 22(12): 2000710 doi: 10.1002/adem.202000710
    [58] JEONG B, LEE B, KIM J H, et al. Drilling of sub-100 μm hourglass-shaped holes in diamond with femtosecond laser pulses[J]. Quantum Electronics, 2020, 50(2): 201-204 doi: 10.1070/QEL17097
    [59] JUODKAZIS S, OKUNO H, KUJIME N, et al. Hole drilling in stainless steel and silicon by femtosecond pulses at low pressure[J]. Applied Physics A, 2004, 79(4-6): 1555-1559 doi: 10.1007/s00339-004-2846-0
    [60] XIA B, JIANG L, LI X W, et al. High aspect ratio, high-quality microholes in PMMA: a comparison between femtosecond laser drilling in air and in vacuum[J]. Applied Physics A, 2015, 119(1): 61-68 doi: 10.1007/s00339-014-8955-5
    [61] LI C X, SHI X, SI J H, et al. Alcohol-assisted photoetching of silicon carbide with a femtosecond laser[J]. Optics Communications, 2009, 282(1): 78-80 doi: 10.1016/j.optcom.2008.09.072
    [62] 张文武, 郭春海, 张天润, 等. 涡轮叶片先进气膜冷却与相关激光打孔技术进展[J]. 航空制造技术, 2016(22): 26-31 https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201622005.htm

    ZHANG W W, GUO C H, ZHANG T R, et al. Advanced film cooling technology of turbine blades and progress in relevant laser drilling technology[J]. Aeronautical Manufacturing Technology, 2016(22): 26-31 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ201622005.htm
    [63] HASAN M, ZHAO J W, JIANG Z Y. A review of modern advancements in micro drilling techniques[J]. Journal of Manufacturing Processes, 2017, 29: 343-375 doi: 10.1016/j.jmapro.2017.08.006
    [64] SKOCZYPIEC S, MACHNO M, BIZOŃ W. The capabilities of electrodischarge microdrilling of high aspect ratio holes in ceramic materials[J]. Management and Production Engineering Review, 2015, 6(3): 61-69 doi: 10.1515/mper-2015-0027
    [65] SEN M H, SHAN H S. A review of electrochemical macro-to micro-hole drilling processes[J]. International Journal of Machine Tools and Manufacture, 2005, 45(2): 137-152 doi: 10.1016/j.ijmachtools.2004.08.005
    [66] 夏博, 姜澜, 李晓炜. 飞秒激光高质量高深径比微孔加工机理及其在线观测[J]. 金属加工(冷加工), 2017(4): 65 https://www.cnki.com.cn/Article/CJFDTOTAL-JXGR201704036.htm

    XIA B, JIANG L, LI X W. Mechanism and on-line observation of femtosecond laser micro hole machining with high quality and high aspect ratio[J]. Metal Working (Metal Cutting), 2017(4): 65 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXGR201704036.htm
    [67] SHABGARD M R, ALENABI H. Ultrasonic assisted electrical discharge machining of Ti-6Al-4V alloy[J]. Materials and Manufacturing Processes, 2015, 30(8): 991-1000 doi: 10.1080/10426914.2015.1004686
    [68] SABYROV N, JAHAN M P, BILAL A, et al. Ultrasonic vibration assisted electro-discharge machining (EDM)-an overview[J]. Materials, 2019, 12(3): 522 doi: 10.3390/ma12030522
    [69] LIN Y C, HUNG J C, LEE H M, et al. Machining characteristics of a hybrid process of EDM in gas combined with ultrasonic vibration[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(5-8): 2801-2808 doi: 10.1007/s00170-017-0369-z
    [70] HIRAO A, GOTOH H, TANI T. Some effects on edm characteristics by assisted ultrasonic vibration of the tool electrode[J]. Procedia CIRP, 2018, 68: 76-80 doi: 10.1016/j.procir.2017.12.025
    [71] GOIOGANA M, SARASUA J A, RAMOS J M. Ultrasonic assisted electrical discharge machining for high aspect ratio blind holes[J]. Procedia CIRP, 2018, 68: 81-85 doi: 10.1016/j.procir.2017.12.026
    [72] PRIHANDANA G S, MAHARDIKA M, HAMDI M, et al. Effect of low-frequency vibration on workpiece in EDM processes[J]. Journal of Mechanical Science and Technology, 2011, 25(5): 1231-1234 doi: 10.1007/s12206-011-0307-1
    [73] KURNIAWAN R, KUMARAN S T, PRABU V A, et al. Measurement of burr removal rate and analysis of machining parameters in ultrasonic assisted dry EDM (US-EDM) for deburring drilled holes in CFRP composite[J]. Measurement, 2017, 110: 98-115 doi: 10.1016/j.measurement.2017.06.008
    [74] SINGH P, YADAVA V, NARAYAN A. Machining performance characteristics of inconel 718 superalloy due to hole-sinking ultrasonic assisted micro-EDM[J]. Journal of Advanced Manufacturing Systems, 2018, 17(1): 89-105 doi: 10.1142/S0219686718500063
    [75] LIU Y, CHANG H, ZHANG W C, et al. A Simulation study of debris removal process in ultrasonic vibration assisted electrical discharge machining (EDM) of deep holes[J]. Micromachines, 2018, 9(8): 378 doi: 10.3390/mi9080378
    [76] UTHAYAKUMAR M, KUMARAN S T, KHAN M A, et al. Microdrilling of AA (6351)-SiC-B4C composite using hybrid micro-ECDM process[J]. Journal of Testing and Evaluation, 2020, 48(4): 3073-3086
    [77] 刘斌, 吴强, 成哲. 微小孔电火花电解复合加工关键技术研究[J]. 电加工与模具, 2019(4): 29-32 doi: 10.3969/j.issn.1009-279X.2019.04.006

    LIU B, WU Q, CHENG Z. Research on key technology of micro-hole EDM-ECM composited processing[J]. Electromachining & Mould, 2019(4): 29-32 (in Chinese) doi: 10.3969/j.issn.1009-279X.2019.04.006
    [78] 邢俊. 微小孔电火花-电解复合加工机床结构设计及工具电极损耗研究[D]. 南京: 南京航空航天大学, 2016

    XING J. Structure design of machine tool and study on tool electrode wear for EDM & ECM hybrid machining of micro hole[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016 (in Chinese)
    [79] ZHANG Y, WANG C, WANG Y, et al. Geometric accuracy improvement by using electrochemical reaming with a helical tube electrode as post-processing for EDM[J]. Materials, 2019, 12(21): 3564 doi: 10.3390/ma12213564
    [80] 丁飞, 徐正扬, 王丰, 等. 冰层辅助对电火花-电解复合穿孔的影响[J]. 航空学报, 2017, 38(5): 420643 https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201705024.htm

    DING F, XU Z Y, WANG F, et al. Effects of aided ice layer on electrochemical discharge drilling[J]. Acta Aeronautica ET Astronautica Sinica, 2017, 38(5): 420643 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201705024.htm
    [81] 纪磊, 张彦, 郭兆翠, 等. 微小孔螺旋管电极电火花-电解组合加工数值模拟及试验分析[J]. 南京工业大学学报, 2019, 41(6): 679-687 doi: 10.3969/j.issn.1671-7627.2019.06.001

    JI L, ZHANG Y, GUO Z C, et al. Numerical simulation and experimental analysis on micro-holes processing by helical tube electrode[J]. Journal of Nanjing University of Technology, 2019, 41(6): 679-687 (in Chinese) doi: 10.3969/j.issn.1671-7627.2019.06.001
    [82] ALAVI S H, HARIMKAR S P. Melt expulsion during ultrasonic vibration-assisted laser surface processing of austenitic stainless steel[J]. Ultrasonics, 2015, 59: 21-30 doi: 10.1016/j.ultras.2015.01.013
    [83] 沈诚, 邹平, 康迪, 等. 超声振动透镜辅助激光打孔实验研究[J]. 中国机械工程, 2020, 31(21): 2542-2546 doi: 10.3969/j.issn.1004-132X.2020.21.004

    SHEN C, ZOU P, KANG D, et al. Experimental study on ultrasonic vibration lens assisted laser drilling[J]. China Mechanical Engineering, 2020, 31(21): 2542-2546 (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.21.004
    [84] ABDOLLAHI H, SHAHRAKI S, TEIMOURI R. Empirical modeling and optimization of process parameters in ultrasonic assisted laser micromachining of Ti-6Al-4V[J]. International Journal of Lightweight Materials and Manufacture, 2019, 2(4): 279-287 doi: 10.1016/j.ijlmm.2019.08.008
    [85] WANG H X, XU G X, ZHU S K, et al. Comparison of percussion laser drilling quality with and without water-based ultrasonic assistance[J]. Journal of Manufacturing Processes, 2018, 36: 175-180 doi: 10.1016/j.jmapro.2018.10.001
    [86] XIA K B, REN N F, WANG H X, et al. Analysis for effects of ultrasonic power on ultrasonic vibration-assisted single-pulse laser drilling[J]. Optics and Lasers in Engineering, 2018, 110: 279-287 doi: 10.1016/j.optlaseng.2018.04.022
    [87] WANG H X, ZHU S K, XU G X, et al. Influence of ultrasonic vibration on percussion drilling performance for millisecond pulsed Nd: YAG laser[J]. Optics & Laser Technology, 2018, 104: 133-139
    [88] 刘斌, 戴玉堂, 殷广林, 等. 超声波辅助飞秒激光加工光纤材料的工艺探索[J]. 中国激光, 2016, 43(3): 0303005 https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201603010.htm

    LIU B, DAI Y T, YIN G L, et al. Exploration on ultrasonic vibration aided femtosecond laser machining process of fiber optic materials[J]. Chinese Journal of Lasers, 2016, 43(3): 0303005 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201603010.htm
    [89] ALAVI S H, HARIMKAR S P. Effect of vibration frequency and displacement on melt expulsion characteristics and geometric parameters for ultrasonic vibration-assisted laser drilling of steel[J]. Ultrasonics, 2019, 94: 305-313 doi: 10.1016/j.ultras.2018.08.012
    [90] ALAVI S H, HARIMKAR S P. Evolution of geometric and quality features during ultrasonic vibration-assisted continuous wave laser surface drilling[J]. Journal of Materials Processing Technology, 2016, 232: 52-62 doi: 10.1016/j.jmatprotec.2016.01.025
    [91] XIA K B, WANG H X, REN N F, et al. Laser drilling in nickel super-alloy sheets with and without ultrasonic assistance characterized by transient in-process detection with indirect characterization after hole-drilling[J]. Optics & Laser Technology, 2021, 134: 106559
    [92] WANG H X, XU Y, ZHENG H Y, et al. Monitoring and analysis of millisecond laser drilling process and performance with and without longitudinal magnetic assistance and/or assist gas[J]. Journal of Manufacturing Processes, 2019, 48: 297-312 doi: 10.1016/j.jmapro.2019.10.015
    [93] WANG H X, XU Y, ZHU S K, et al. Water-based helical laser hole-cutting in nickel super-alloy GH4049 assisted by longitudinal and transverse magnetic fields with/without ultrasonic assistance[J]. Optics and Lasers in Engineering, 2020, 128: 105985 doi: 10.1016/j.optlaseng.2019.105985
    [94] WANG H X, ZHU S K, XU Y, et al. Experimental investigation on effects of water-based ultrasonic vibrations, transverse magnetic field and water temperatures on percussion laser drilling performance[J]. Optics & Laser Technology, 2019, 112: 395-408
    [95] AMIRI S, KHAJEHZADEH M, RAZFAR M R. Magnetic field and ultrasonic aided laser drilling effect on Ti6Al4V microstructural characteristics[J]. Materials and Manufacturing Processes, 2020, 35(16): 1832-1841 doi: 10.1080/10426914.2020.1802041
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  174
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 刊出日期:  2021-12-05

目录

    /

    返回文章
    返回