留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种退役锂电池健康状态估计方法

王思亮 武小兰 白志峰

王思亮, 武小兰, 白志峰. 一种退役锂电池健康状态估计方法[J]. 机械科学与技术, 2023, 42(1): 139-148. doi: 10.13433/j.cnki.1003-8728.20200576
引用本文: 王思亮, 武小兰, 白志峰. 一种退役锂电池健康状态估计方法[J]. 机械科学与技术, 2023, 42(1): 139-148. doi: 10.13433/j.cnki.1003-8728.20200576
WANG Siliang, WU Xiaolan, BAI Zhifeng. A Method for Estimating State of Health of Retired Lithium Battery[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 139-148. doi: 10.13433/j.cnki.1003-8728.20200576
Citation: WANG Siliang, WU Xiaolan, BAI Zhifeng. A Method for Estimating State of Health of Retired Lithium Battery[J]. Mechanical Science and Technology for Aerospace Engineering, 2023, 42(1): 139-148. doi: 10.13433/j.cnki.1003-8728.20200576

一种退役锂电池健康状态估计方法

doi: 10.13433/j.cnki.1003-8728.20200576
基金项目: 

陕西省教育厅重点实验室项目 20JS065

陕西省应用技术研发项目 GX2012

西安市清洁能源重点实验室项目 2019219914SYS014CG036

详细信息
    作者简介:

    王思亮(1996-),硕士研究生,研究方向为车辆新型动力传动技术及节能控制,w1271902867@163.com

    通讯作者:

    白志峰,讲师,博士,zhifeng.bai@xauat.edu.cn

  • 中图分类号: TM912

A Method for Estimating State of Health of Retired Lithium Battery

  • 摘要: 针对退役锂电池健康状态估计效率较低的现状, 提出一种快速、有效的估计方法。首先采用3阶RC等效电路模型描述电池特性得出状态方程, 确保电池模型精确性, 同时引入电池荷电状态SOC(State of charge)和欧姆内阻(R0)作为状态方程参数。其次利用区域概念, 计算出特定的区域容量与区域电压, 减少电池参数估计所需要的数据、时间。然后通过扩展卡尔曼滤波(Extended kalman filtering)算法估计电池参数SOCR0, 进而对电池健康状态(State of health, SOH)进行估计。最后, 利用电池测试设备(Arbin-BT2000)对18650电池进行充放电实验, 验证该方法的可行性。实验结果证明SOH估计所需参数明显减少, 使得电池数据测量所需时间明显缩短, 并且估计误差不超过4%, 误差较小, 说明所提出方法能快速、有效地估算出电池SOH
  • 图  1  3阶RC等效电路模型

    图  2  恒流放电工况

    图  3  电池恒流放电端电压波形

    图  4  OCV-SOC曲线

    图  5  区域容量和区域电压的提取

    图  6  EKF估计SOC流程图

    图  7  算法流程图

    图  8  EKF结合区域概念估计电池参数

    图  9  EKF结合区域概念估计电池参数误差

    图  10  退役锂电池SOC与内阻关系图

    图  11  EKF估计R0所产生的误差和结合区域概念估计所产生的误差对比图

    图  12  SOCSOH关系图

    图  13  EKF结合区域概念估计SOH所产生的误差

    图  14  实验环境

    图  15  恒定工况循环

    图  16  在EKF结合区域概念下估计电池SOCR0关系图

    图  17  在EKF结合区域概念下估计电池SOCSOH关系图

    图  18  EKF结合区域概念估计SOH所产生的误差

    表  1  等效电路模型参数辨识

    R1/mΩ R2/mΩ R3/mΩ C1/kF C2/kF C3/kF
    1.966 2.511 6.160 4.751 2.703 1.230
    下载: 导出CSV

    表  2  复合模型参数

    K0 K1 K2 K3 K4
    0.438 7 0.381 6 0.765 5 0.795 2 0.186 9
    下载: 导出CSV
  • [1] ZHOU X, PAN Z Q, HAN X B, et al. An easy-to-implement multi-point impedance technique for monitoring aging of lithium ion batteries[J]. Journal of Power Sources, 2019, 417: 188-192 doi: 10.1016/j.jpowsour.2018.11.087
    [2] GUO P Y, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442-450 doi: 10.1016/j.jpowsour.2018.11.072
    [3] CHEN Z Y, XIONG R, CAO J Y. Particle swarm optimization- based optimal power management of plug-in hybrid electric vehicles considering uncertain driving conditions[J]. Energy, 2016, 96: 197-208 doi: 10.1016/j.energy.2015.12.071
    [4] WANG Z K, ZENG S K, GUO J B, et al. State of health estimation of lithium-ion batteries based on the constant voltage charging curve[J]. Energy, 2019, 167: 661-669 doi: 10.1016/j.energy.2018.11.008
    [5] 杨杰, 解晶莹, 晏莉琴, 等. 锂离子电池健康状态估计方法[J]. 电池, 2019, 49(3): 247-250 doi: 10.19535/j.1001-1579.2019.03.017

    YANG J, XIE J Y, YAN L Q, et al. The state of health estimation methods for Li-ion battery[J]. Battery Bimonthly, 2019, 49(3): 247-250 (in Chinese) doi: 10.19535/j.1001-1579.2019.03.017
    [6] SCIPIONI R, JϕRGENSEN P S, STROE D I, et al. Complementary analyses of aging in a commercial LiFePO4/Graphite 26650 cell[J]. Electrochimica Acta, 2018, 284: 454-468 doi: 10.1016/j.electacta.2018.07.124
    [7] COUTO L D, SCHORSCH J, JOB N, et al. State of health estimation for lithium ion batteries based on an equivalent-hydraulic model: an iron phosphate application[J]. Journal of Energy Storage, 2019, 21: 259-271 doi: 10.1016/j.est.2018.11.001
    [8] TANG X P, ZOU C F, YAO K, et al. A fast estimation algorithm for lithium-ion battery state of health[J]. Journal of Power Sources, 2018, 396: 453-458 doi: 10.1016/j.jpowsour.2018.06.036
    [9] TRAN N T, KHAN A B, CHOI W. State of charge and state of health estimation of AGM VRLA batteries by employing a dual extended Kalman filter and an ARX model for online parameter estimation[J]. Energies, 2017, 10(1): 137 doi: 10.3390/en10010137
    [10] 李嘉波, 魏孟, 李忠玉, 等. 基于自适应扩展卡尔曼滤波的锂离子电池荷电状态估计[J]. 储能科学与技术, 2020, 9(4): 1147-1152 https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202004016.htm

    LI J B, WEI M, LI Z Y, et al. State of charge estimation of Li-ion battery based on adaptive extended Kalman filter[J]. Energy Storage Science and Technology, 2020, 9(4): 1147-1152 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX202004016.htm
    [11] 秦鹏, 王振新, 康健强, 等. 实时辨识锂离子电池参数并基于改进AEKF估算SOC[J]. 电子测量技术, 2020, 43(10): 30-35 https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL202010006.htm

    QIN P, WANG Z X, KANG J Q, et al. Real-time identification of lithium-ion battery parameters and estimation of SOC based on improved AEKF[J]. Electronic Measurement Technology, 2020, 43(10): 30-35 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL202010006.htm
    [12] 王维强, 张吉, 张力, 等. 基于三阶RC网络的等效电路电池模型[J]. 电池, 2019, 49(3): 212-216 https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201903011.htm

    WANG W Q, ZHANG J, ZHANG L, et al. Equivalent circuit model for battery based on third-order RC network[J]. Battery Bimonthly, 2019, 49(3): 212-216 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DACI201903011.htm
    [13] 刘轶鑫, 张頔, 李雪, 等. 基于SOC-OCV曲线特征的SOH估计方法研究[J]. 汽车工程, 2019, 41(10): 1158-1163 https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910008.htm

    LIU Y X, ZHANG D, LI X, et al. A research on SOH estimation method based on SOC-OCV curve characteristics[J]. Automotive Engineering, 2019, 41(10): 1158-1163 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201910008.htm
    [14] 程泽, 孙幸勉, 程思璐. 一种锂离子电池荷电状态估计与功率预测方法[J]. 电工技术学报, 2017, 32(15): 180-189 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201715021.htm

    CHENG Z, SUN X M, CHENG S L. Method for estimation of state of charge and power prediction of lithium-ion battery[J]. Transactions of China Electrotechnical Society, 2017, 32(15): 180-189 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201715021.htm
    [15] 刘毅, 谭国俊, 何晓群. 优化电池模型的自适应Sigma卡尔曼荷电状态估算[J]. 电工技术学报, 2017, 32(2): 108-118 https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201702013.htm

    LIU Y, TAN G J, HE X Q. Optimized battery model based adaptive sigma Kalman filter for state of charge estimation[J]. Transactions of China Electrotechnical Society, 2017, 32(2): 108-118 (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS201702013.htm
    [16] 张昊. 基于IC曲线特征参数的锂离子电池SOH估计及DSP实现[D]. 北京: 北京交通大学, 2018

    ZHANG H. SOH estimation and DSP implementation of lithium ion battery based on characteristic parameters of IC curve[D]. Beijing: Beijing Jiaotong University, 2018 (in Chinese)
    [17] 王中鲜, 赵魁, 徐建东, 等. MATLAB建模与仿真应用教程[M]. 2版. 北京: 机械工业出版社, 2014

    WANG Z X, ZHAO K, XU J D, et al. MATLAB modeling and simulation application tutorial[M]. 2nd ed. Beijing: Machinery Industry Press, 2014 (in Chinese)
    [18] 黄小平, 王岩. 卡尔曼滤波原理及应用-MATLAB仿真[M]. 北京: 电子工业出版社, 2015

    HUANG X P, WANG Y. Kalman filter principle and application-MATLAB simulation[M]. Beijing: Electronic Industry Press, 2015 (in Chinese)
    [19] REMMLINGER J, BUCHHOLZ M, MEILER M, et al. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation[J]. Journal of Power Sources, 2011, 196(12): 5357-5363
    [20] KIM I S. A technique for estimating the state of health of lithium batteries through a dual-sliding-mode observer[J]. IEEE Transactions on Power Electronics, 2010, 25(4): 1013-1022
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  84
  • PDF下载量:  28
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-14
  • 刊出日期:  2023-01-25

目录

    /

    返回文章
    返回