留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁挤压的多盘式磁流变液传动性能研究

邱锐 熊洋 黄金

邱锐,熊洋,黄金. 电磁挤压的多盘式磁流变液传动性能研究[J]. 机械科学与技术,2022,41(11):1658-1664 doi: 10.13433/j.cnki.1003-8728.20200556
引用本文: 邱锐,熊洋,黄金. 电磁挤压的多盘式磁流变液传动性能研究[J]. 机械科学与技术,2022,41(11):1658-1664 doi: 10.13433/j.cnki.1003-8728.20200556
QIU Rui, XIONG Yang, HUANG Jin. Exploring Transmission Performance of Multi-disc Magnetorheological Fluid by Electromagnetic Extrusion[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1658-1664. doi: 10.13433/j.cnki.1003-8728.20200556
Citation: QIU Rui, XIONG Yang, HUANG Jin. Exploring Transmission Performance of Multi-disc Magnetorheological Fluid by Electromagnetic Extrusion[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1658-1664. doi: 10.13433/j.cnki.1003-8728.20200556

电磁挤压的多盘式磁流变液传动性能研究

doi: 10.13433/j.cnki.1003-8728.20200556
基金项目: 国家自然科学基金项目(51875068)
详细信息
    作者简介:

    邱锐(1998−),硕士研究生,研究方向为磁流变液挤压传动电磁场有限元分析与设计,18700500045@163.com

    通讯作者:

    黄金,教授,硕士生导师,jhuangcq@cqut.edu.cn

  • 中图分类号: TH132

Exploring Transmission Performance of Multi-disc Magnetorheological Fluid by Electromagnetic Extrusion

  • 摘要: 针对高转矩磁流变液装置结构复杂及使用场景受限等问题,提出了一种电磁挤压的多盘式磁流变液传动方法,利用励磁线圈通电后产生的电磁力对磁流变液进行挤压,使其在传递高转矩的同时,装置的结构更加简单紧凑。利用Maxwell和Abaqus对装置进行了磁场及结构场有限元分析,计算得到了不同输入电流下磁流变液的剪切屈服应力、电磁力以及各工作间隙内磁流变液所受挤压应力;分析了磁流变液在受到挤压强化后的剪切屈服应力,并计算得出装置所能传递的转矩。对比实验表明:利用电磁挤压,磁流变液的传动性能显著增强,在3 A输入电流、7 241.4 N电磁力时,相较于未挤压状态,装置传递转矩提升了约78.6%。
  • 图  1  MRF离合器结构示意图

    图  2  磁路简化模型

    图  3  MRF-J01T材料属性

    图  4  磁感应强度云图

    图  5  工作间隙平均磁感应强度

    图  6  工作间隙剪切屈服应力

    图  7  电磁力与输入电流的关系

    图  8  挤压应力云图

    图  9  不同电流下的挤压应力

    图  10  MRF挤压强化剪切屈服应力

    图  11  多盘式MRF装置实验转矩与本文装置计算转矩

    图  12  挤压MRF装置实验转矩与本文装置计算转矩

    表  1  MRF离合器结构参数

    参数 数值 参数 数值
    磁路段数 5 L1/mm 90
    R1/mm 55 L2/mm 22
    R2/mm 115 L3/mm 18
    R3/mm 145 L4/mm 1
    R4/mm 8 L5/mm 6
    下载: 导出CSV

    表  2  MRF参数

    φµfµ0µp C ξ σs2/ τ02 γ
    0.254004π×10−7100.31.2029200
    下载: 导出CSV
  • [1] OLABI A G, GRUNWALD A. Design and application of magneto-rheological fluid[J]. Materials & Design, 2007, 28(10): 2658-2664
    [2] ASHOUR O, ROGERS C A, KORDONSKY W. Magnetorheological fluids: materials, characterization, and devices[J]. Journal of Intelligent Material Systems and Structures, 1996, 7(2): 123-130 doi: 10.1177/1045389X9600700201
    [3] CHEN S, HUANG J, JIAN K L, et al. Analysis of influence of temperature on magnetorheological fluid and transmission performance[J]. Advances in Materials Science and Engineering, 2015, 2015: 583076
    [4] ASHTIANI M, HASHEMABADI S H, GHAFFARI A. A review on the magnetorheological fluid preparation and stabilization[J]. Journal of Magnetism and Magnetic Materials, 2015, 374: 716-730 doi: 10.1016/j.jmmm.2014.09.020
    [5] HUANG J, ZHANG J Q, YANG Y, et al. Analysis and design of a cylindrical magneto-rheological fluid brake[J]. Journal of Materials Processing Technology, 2002, 129(1-3): 559-562 doi: 10.1016/S0924-0136(02)00634-9
    [6] 王西, 黄金, 谢勇. 圆锥式磁流变与形状记忆合金复合传动性能研究[J]. 机械传动, 2019, 43(8): 36-40

    WANG X, HUANG J, XIE Y. Research on conical magnetorheological and shape memory alloy composite transmission performance[J]. Journal of Mechanical Transmission, 2019, 43(8): 36-40 (in Chinese)
    [7] 袁金福, 王建文. 圆槽盘式磁流变液制动器的设计研究[J]. 机械科学与技术, 2018, 37(2): 226-231

    YUAN J F, WANG J W. Design and research of circular groove disk-type magneto-rheological brake[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37(2): 226-231 (in Chinese)
    [8] 黄金, 周轶, 袁发鹏. 圆盘式磁流变液变厚度传动性能研究[J]. 机械传动, 2017, 41(12): 26-30

    HUANG J, ZHOU Y, YUAN F P. Study on the transmission characteristic of disk type magnetor-heological fluid with variable thickness[J]. Journal of Mechanical Transmission, 2017, 41(12): 26-30 (in Chinese)
    [9] 熊洋, 黄金, 舒锐志. 磁流变液与电热形状记忆合金联合传动性能研究[J]. 中国机械工程, 2021, 32(17): 2040-2046 doi: 10.3969/j.issn.1004-132X.2021.17.004

    XIONG Y, HUANG J, SHU R Z. Research on combinedtransmission performance of magnetorheologicalfluid and electrothermal shape memory alloys[J]. China Mechanical Engineering, 2021, 32(17): 2040-2046 (in Chinese) doi: 10.3969/j.issn.1004-132X.2021.17.004
    [10] MAZLAN S A, EKREEM N B, OLABI A G. The performance of magnetorheological fluid in squeeze mode[J]. Smart Materials and Structures, 2007, 16(5): 1678-1682 doi: 10.1088/0964-1726/16/5/021
    [11] BECNEL A C, SHERMAN S G, HU W, et al. Squeeze strengthening of magnetorheological fluids using mixed mode operation[J]. Journal of Applied Physics, 2015, 117(17): 17C708 doi: 10.1063/1.4907603
    [12] WANG N N, LIU X H, ZHANG X H. Squeeze-strengthening effect of silicone oil-based magnetorheological fluid with nanometer Fe3O4 addition in high-torque magnetorheological brakes[J]. Journal of Nanoscience and Nanotechnology, 2019, 19(5): 2633-2639 doi: 10.1166/jnn.2019.15895
    [13] 王鸿云, 毕成, 赵爽, 等. 基于挤压-剪切模式的高转矩磁流变离合器设计与实验[J]. 光学 精密工程, 2017, 25(9): 2413-2420 doi: 10.3788/OPE.20172509.2413

    WANG H Y, BI C, ZHAO S, et al. Design and experiment of high-torque MR clutch in compression-shear mode[J]. Optics and Precision Engineering, 2017, 25(9): 2413-2420 (in Chinese) doi: 10.3788/OPE.20172509.2413
    [14] SONG W L, WANG S Y, CHOI S B, et al. Thermal and tribological characteristics of a disc-type magnetorheological brake operated by the shear mode[J]. Journal of Intelligent Material Systems and Structures, 2019, 30(5): 722-733 doi: 10.1177/1045389X18770740
    [15] ZHANG X Z, GONG X L, ZHANG P Q, et al. Study on the mechanism of the squeeze-strengthen effect in magnetorheological fluids[J]. Journal of Applied Physics, 2004, 96(4): 2359-2364 doi: 10.1063/1.1773379
    [16] WANG D M, HOU Y F, TIAN Z Z. A novel high-torque magnetorheological brake with a water cooling method for heat dissipation[J]. Smart Materials and Structures, 2013, 22(2): 025019 doi: 10.1088/0964-1726/22/2/025019
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  82
  • HTML全文浏览量:  28
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-04
  • 刊出日期:  2023-02-04

目录

    /

    返回文章
    返回