留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种仿象鼻气动连续体机器人的结构设计

张启航 邵敏 任树雄 贺晶奎 王晶

张启航,邵敏,任树雄, 等. 一种仿象鼻气动连续体机器人的结构设计[J]. 机械科学与技术,2022,41(4):493-499 doi: 10.13433/j.cnki.1003-8728.20200551
引用本文: 张启航,邵敏,任树雄, 等. 一种仿象鼻气动连续体机器人的结构设计[J]. 机械科学与技术,2022,41(4):493-499 doi: 10.13433/j.cnki.1003-8728.20200551
ZHANG Qihang, SHAO Min, REN Shuxiong, HE Jingkui, WANG Jing. Structural Design of a Pneumatic Trunk-type Continuum Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 493-499. doi: 10.13433/j.cnki.1003-8728.20200551
Citation: ZHANG Qihang, SHAO Min, REN Shuxiong, HE Jingkui, WANG Jing. Structural Design of a Pneumatic Trunk-type Continuum Robot[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 493-499. doi: 10.13433/j.cnki.1003-8728.20200551

一种仿象鼻气动连续体机器人的结构设计

doi: 10.13433/j.cnki.1003-8728.20200551
基金项目: 国家自然科学基金重点项目(51235009)
详细信息
    作者简介:

    张启航(1996−),硕士研究生,研究方向为机械系统动力学,1849375351@qq.com

    通讯作者:

    王晶,教授,jwang@xjtu.edu.cn

  • 中图分类号: TH128

Structural Design of a Pneumatic Trunk-type Continuum Robot

  • 摘要: 提出了气压驱动的仿象鼻连续体机器人结构设计的思路与方法,在对比分析象鼻与连续体机构的运动性能后,本仿象鼻气动机器人整体结构设计成多个构节串联的形式;通过分析机器人工作空间、灵巧度和可操作度等性能指标,确定机器人采用3构节串联形式;利用Adams仿真分析结果,对各构节最优的间隔盘数目、径向尺寸等设计参数进行了优选。结果表明,设计的机器人可以实现灵活的运动和目标物抓取功能,达到了设计目标。研究揭示了构节数目等设计参数对连续体机器人工作空间和运动学测度的影响。
  • 图  1  连续体构节结构化简图

    图  2  气动肌肉实物图

    图  3  单个构节三维模型图

    图  4  单构节到五构节连续体机器人工作空间截面图

    图  5  2 ~ 5个构节连续体机器人雅克比矩阵的秩

    图  6  二构节到五构节连续体机器人雅克比矩阵条件数

    图  7  六自由度、八自由度、三构节机器人可操作度

    图  8  构节在空载下不同间隔盘数目n时的最大弯曲角度

    图  9  不同负载下弯曲角度与间隔盘数目n关系曲线

    图  10  空载时不同r值下构节的最大弯曲角度值

    图  11  2.0 kg负载下第一构节最大弯曲角度与r关系曲线

    图  12  仿象鼻气动连续体机器人结构组成图

    图  13  XZ平面内机器人实际工作空间截面图

    图  14  仿象鼻气动连续体机器人运动与抓取过程

    表  1  象鼻、单个连续体构节和多构节连续体机构变形特性

    变形能力象鼻单个连续
    体构节
    多构节连续
    体机构
    伸长 幅度较小
    弯曲
    偏转 ×
    注:“√”表示具有该能力,“×”表示不具有该能力。
    下载: 导出CSV

    表  2  波纹管参数表

    总长/cm中径/cm节数节距/cm
    16 3.3 17 0.8
    下载: 导出CSV

    表  3  仿象鼻气动连续体机器人空载变形能力与运动范围表

    构节名称运动性能
    长度区间/cm弯曲区间/(°)偏转区间/(°)
    第一构节[17.0,29.3][0,62.7]
    第二构节[16.8,29.1][0,82.5]
    第三构节[16.5,29.6][0,93.4]
    整体[63.3,101.0][0,238.6][−180,180]
    下载: 导出CSV
  • [1] 陈宵燕, 张秋菊, 孙沂琳. 柔性臂机器人控制关键技术的研究进展[J]. 机械设计与研究, 2015, 31(1): 22-26,30

    CHEN X Y, ZHANG Q J, SUN Y L. Research progress on the key control techniques of flexible manipulators[J]. Machine Design & Research, 2015, 31(1): 22-26,30 (in Chinese)
    [2] 徐凯, 刘欢. 多杆连续体机构: 构型与应用[J]. 机械工程学报, 2018, 54(13): 25-33 doi: 10.3901/JME.2018.13.025

    XU K, LIU H. Multi-backbone continuum mechanisms: forms and applications[J]. Journal of Mechanical Engineering, 2018, 54(13): 25-33 (in Chinese) doi: 10.3901/JME.2018.13.025
    [3] 胡海燕, 王鹏飞, 孙立宁, 等. 线驱动连续型机器人的运动学分析与仿真[J]. 机械工程学报, 2010, 46(19): 1-8 doi: 10.3901/JME.2010.19.001

    HU H Y, WANG P F, SUN L N, et al. Kinematic analysis and simulation for cable-driven continuum robot[J]. Journal of Mechanical Engineering, 2010, 46(19): 1-8 (in Chinese) doi: 10.3901/JME.2010.19.001
    [4] 冯笑笑, 倪劲成, 姜付兵, 等. 基于Pro/E的结肠镜机器人的建模与仿真[J]. 苏州大学学报(工科版), 2012, 32(5): 32-36

    FENG X X, NI J C, JIANG F B, et al. Kinematic analysis and simulation for the colonoscope continuum robot with Pro/E[J]. Journal of Soochow University (Engineering Science Edition), 2012, 32(5): 32-36 (in Chinese)
    [5] SANTIAGO J C, WALKER I D, GODAGE I S. Continuum robots for space applications based on layer-jamming scales with stiffening capability[C]//2015 IEEE Aerospace Conference. Big Sky, MT, USA: IEEE, 2015: 1-13
    [6] GODAGE I S, WIRZ R, WALKER I D, et al. Accurate and efficient dynamics for variable-length continuum arms: a center of gravity approach[J]. Soft Robotics, 2015, 2(3): 96-106 doi: 10.1089/soro.2015.0006
    [7] XIE H, WANG T, SHEN Y F, et al. Kinematics algorithm of continuous concentric-tube robot based on particle swarm optimization[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(1): 1-7
    [8] GIANNACCINI M E, XIANG C Q, ATYABI A, et al. Novel design of a soft lightweight pneumatic continuum robot arm with decoupled variable stiffness and positioning[J]. Soft Robotics, 2018, 5(1): 54-70 doi: 10.1089/soro.2016.0066
    [9] KANG B S, PARK E J. Modeling and control of an intrinsic continuum robot actuated by pneumatic artificial muscles[C]//2016 IEEE International Conference on Advanced Intelligent Mechatronics. Banff, AB, Canada: IEEE, 2016: 1157-1162
    [10] SUZUMORI K, IIKURA S, TANAKA H. Development of flexible microactuator and its applications to robotic mechanisms[C]//1991 IEEE International Conference on Robotics and Automation. Sacramento, CA, USA: IEEE, 1992: 1622-1627
    [11] IMMEGA G, ANTONELLI K. The KSI tentacle manipulator[C]//Proceedings of 1995 IEEE International Conference on Robotics and Automation. Nagoya, Japan IEEE, 1995: 3149-3154
    [12] GRZESIAK A, BECKER R, VERL A. The Bionic Handling Assistant: a success story of additive manufacturing[J]. Assembly Automation, 2011, 31(4): 329-333 doi: 10.1108/01445151111172907
    [13] WALKER I D. Biologically inspired vine-like and tendril-like robots[C]//Proceedings of the 2015 Science and Information Conference. London, UK: IEEE, 2015: 714-720
    [14] LASTINGER M C, VERMA S, KAPADIA A D, et al. TREE: a variable topology, branching continuum robot[C]//2019 IEEE International Conference on Robotics and Automation. Montreal, QC, Canada: IEEE, 2019: 5365-5371
    [15] GONTHINA P S, WOOTEN M B, GODAGE I S, et al. Mechanics for tendon actuated multisection continuum arms[C]//2020 IEEE International Conference on Robotics and Automation. Paris, France: IEEE, 2020: 3896-3902
    [16] WALKER I D, NAHAR D, VERMA S, et al. Challenges in creating long continuum robots [C]//International Conference on Methods and Models in Automation and Robotics. Miedzyzdroje, Poland: IEEE, 2016: 339-344
    [17] BÖETTCHER G, LILGE S, BURGNER-KAHRS J. Design of a reconfigurable parallel continuum robot with tendon-actuated kinematic chains[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 1272-1279 doi: 10.1109/LRA.2021.3057557
    [18] XU K, LIU H, LIU Z H, et al. A single-actuator prosthetic hand using a continuum differential mechanism[C]//2015 IEEE International Conference on Robotics and Automation. Seattle, WA, USA: IEEE, 2015: 6457-6462
    [19] 耿仕能, 王友渔, 陈丽莎, 等. 变刚度连续型机械臂设计与控制[J]. 宇航学报, 2018, 39(12): 1391-1400

    GENG S N, WANG Y Y, CHEN L S, et al. Design and control of a continuum arm with variable stiffness[J]. Journal of Astronautics, 2018, 39(12): 1391-1400 (in Chinese)
    [20] 廖兵. 仿蛇缠绕软体爬杆机器人运动特性及应用研究 [D]. 绵阳: 西南科技大学, 2020

    LIAO B. Kinematic characteristics and applications of snake-like winding soft rod-climbing robot [D]. Mianyang: Southwest University of Science and Technology, 2020 (in Chinese)
    [21] 方跃法, 林华杰. 连续体并联抓取机器人的结构设计及运动学分析[J]. 北京交通大学学报, 2019, 43(4): 80-87,95 doi: 10.11860/j.issn.1673-0291.20180119

    FANG Y F, LIN H J. Structural design and kinematics analysis of the continuum parallel grasping manipulator[J]. Journal of Beijing Jiaotong University, 2019, 43(4): 80-87,95 (in Chinese) doi: 10.11860/j.issn.1673-0291.20180119
    [22] 任树雄. 一种仿象鼻气动连续体机器人设计与控制研究[D]. 西安: 西安交通大学, 2019: 14-15

    REN S X. Design and control of an pneumatic trunk-type continuum robot[D]. Xi' an: Xi' an Jiaotong University, 2019: 14-15 (in Chinese)
    [23] TANGORRA J L, LAUDER G V, HUNTER I W, et al. The effect of fin ray flexural rigidity on the propulsive forces generated by a biorobotic fish pectoral fin[J]. Journal of Experimental Biology, 2010, 213(23): 4043-4054 doi: 10.1242/jeb.048017
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  247
  • HTML全文浏览量:  165
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-21
  • 录用日期:  2021-12-17
  • 刊出日期:  2022-09-05

目录

    /

    返回文章
    返回