留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

概念层次开发在产品概念设计多属性决策方法中的应用

裴卉宁 谭昭芸 黄雪芹 温志强 杨冬梅

裴卉宁,谭昭芸,黄雪芹, 等. 概念层次开发在产品概念设计多属性决策方法中的应用[J]. 机械科学与技术,2022,41(11):1733-1745 doi: 10.13433/j.cnki.1003-8728.20200545
引用本文: 裴卉宁,谭昭芸,黄雪芹, 等. 概念层次开发在产品概念设计多属性决策方法中的应用[J]. 机械科学与技术,2022,41(11):1733-1745 doi: 10.13433/j.cnki.1003-8728.20200545
PEI Huining, TAN Zhaoyun, HUANG Xueqin, WEN Zhiqiang, YANG Dongmei. Applying Concept Hierarchy Development to Multi-attribute Decision-making Method for Product Conceptual Design[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1733-1745. doi: 10.13433/j.cnki.1003-8728.20200545
Citation: PEI Huining, TAN Zhaoyun, HUANG Xueqin, WEN Zhiqiang, YANG Dongmei. Applying Concept Hierarchy Development to Multi-attribute Decision-making Method for Product Conceptual Design[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1733-1745. doi: 10.13433/j.cnki.1003-8728.20200545

概念层次开发在产品概念设计多属性决策方法中的应用

doi: 10.13433/j.cnki.1003-8728.20200545
基金项目: 河北省社会科学基金项目(HB20YS046)
详细信息
    作者简介:

    裴卉宁(1986−),讲师,博士,研究方向为智能设计、产品创新设计方法,peihuining@hebut.edu.cn

    通讯作者:

    杨冬梅,副教授,dongmeiy@hebut.edu.cn

  • 中图分类号: C934;TH122

Applying Concept Hierarchy Development to Multi-attribute Decision-making Method for Product Conceptual Design

  • 摘要: 为了解决目前产品概念设计方案中系统层级结构考虑欠缺以及多属性之间无相互联系的问题,提出一种基于概念层次开发(Concept hierarchy development,CHD)的产品概念设计多属性决策方法。首先,通过CHD理论将各备选产品概念设计方案的图像划分为模块部件、角度视图、物理属性三个设计层次开发,构建每个层次开发中多属性准则之间的相似度比较矩阵。进而利用毕达哥拉斯模糊集(Pythagorean fuzzy sets,PFS)和前景理论(Prospect theory,PT)相结合的方法,得到各决策专家及设计准则的权重分配,从而实现客观合理的产品概念设计多属性决策。最后以响堂山佛像益智玩具的产品概念设计方案为例,验证了该方法的可行性和有效性。
  • 图  1  基于CHD的产品概念设计方案划分框架

    图  2  模糊数直角三角形A

    图  3  模糊数直角三角形AB

    图  4  PT的价值函数

    图  5  基于CHD的产品概念设计多属性决策框架

    图  6  产品概念设计方案图像

    图  7  5种方法总体评价得分排序结果对比图

    表  1  产品概念设计方案1各图像权重

    权重佛头佛身背刻
    模块部件权重0.7780.9030.396
    角度视图权重前0.653,侧0.524,顶0.302前0.852,侧0.459,顶0.751前0.624,侧0.315,顶0.367
    物理属性权重材质 0.572色彩 0.638造型 0.826纹理 0.269
    下载: 导出CSV

    表  2  5个备选方案相似度决策矩阵

    方案 模块部件角度视图物理属性
    D20.3480.5520.869
    D30.5260.6680.389
    D40.8240.4210.524
    D50.4590.2690.877
    D60.3750.2840.358
    下载: 导出CSV

    表  3  方案1模块部件设计层次得分矩阵

    专家 Y1Y2Y3Y4Y5Y6
    N10.80.60.80.70.50.4
    N20.40.30.60.70.50.8
    N30.60.40.60.70.90.5
    N40.70.60.80.30.50.6
    N50.80.70.50.50.60.3
    N60.70.50.70.60.80.9
    N70.80.60.50.40.70.6
    N80.50.80.40.30.60.7
    下载: 导出CSV

    表  4  决策专家评价矩阵

    专家A1A2A3A4A5
    N1〈0.7,0.2〉〈0.6,0.5〉〈0.3,0.4〉〈0.8,0.2〉〈0.6,0.1〉
    N2〈0.5,0.3〉〈0.7,0.5〉〈0.8,0.5〉〈0.6,0.2〉〈0.4,0.7〉
    N3〈0.4,0.5〉〈0.8,0.1〉〈0.6,0.4〉〈0.5,0.6〉〈0.7,0.3〉
    N4〈0.6,0.2〉〈0.4,0.4〉〈0.7,0.5〉〈0.6,0.2〉〈0.5,0.6〉
    N5〈0.9,0.1〉〈0.3,0.6〉〈0.5,0.7〉〈0.7,0.4〉〈0.7,0.3〉
    N6〈0.5,0.6〉〈0.4,0.7〉〈0.5,0.2〉〈0.2,0.1〉〈0.3,0.6〉
    N7〈0.3,0.8〉〈0.6,0.2〉〈0.2,0.4〉〈0.5,0.3〉〈0.4,0.5〉
    N8〈0.2,0.1〉〈0.7,0.6〉〈0.5,0.5〉〈0.6,0.2〉〈0.4,0.4〉
    下载: 导出CSV

    表  5  犹豫度矩阵

    专家A1A2A3A4A5
    N10.6630.6240.8660.5660.794
    N20.8120.5100.3320.7750.592
    N30.7680.5920.1730.6240.648
    N40.7750.8250.5100.7750.529
    N50.4240.7420.5100.5920.648
    N60.6240.5920.8430.9750.387
    N70.5200.8940.8940.8120.768
    N80.9110.3870.7070.7750.825
    下载: 导出CSV

    表  6  正理想解距离矩阵

    专家A1A2A3A4A5
    N10.1670.5530.5900.1080.075
    N20.4250.4900.3410.2010.851
    N30.76300.3950.7430.191
    N40.2320.6310.3840.2010.677
    N500.9480.7800.2060.191
    N60.4010.9240.2750.5550.822
    N71.1010.1790.8340.4010.667
    N80.5971.0700.5430.2030.554
    下载: 导出CSV

    表  7  负理想解距离矩阵

    专家A1A2A3A4A5
    N11.0290.4900.3750.9750.882
    N20.7770.5780.7630.8600.120
    N30.5461.0220.6500.3750.776
    N40.9750.4010.6910.8600.297
    N51.1940.0850.3540.7320.776
    N60.4530.1200.7650.7060.033
    N70.1100.8430.2770.6610.281
    N80.3530.4960.4970.8580.401
    下载: 导出CSV

    表  8  负前景值价值函数

    专家A1A2A3A4A5
    N1−0.466−1.336−1.414−0.317−0.230
    N2−1.060−1.201−0.873−0.548−1.952
    N3−1.7730−0.994−1.732−0.524
    N4−0.622−1.500−0.969−0.548−1.596
    N50−2.147−1.808−0.560−0.524
    N6−1.007−2.099−0.722−1.340−1.894
    N7−2.449−0.495−1.918−1.007−1.575
    N8−1.429−0.388−1.315−0.553−1.338
    下载: 导出CSV

    表  9  正前景值价值函数

    专家A1A2A3A4A5
    N11.0250.5340.4220.9780.895
    N20.8010.6170.7880.8780.155
    N30.5871.0190.6840.4220.800
    N40.9780.4470.7220.8780.344
    N51.1690.1140.4010.7600.800
    N60.4980.1550.7900.7360.050
    N70.1430.8600.3230.6950.327
    N80.4000.5400.5390.8740.447
    下载: 导出CSV

    表  10  概率权重函数

    权重函数$ {\lambda _1} $$ {\lambda _2} $$ {\lambda _3} $$ {\lambda _4} $$ {\lambda _5} $
    $ {\xi ^ + }\left( {{\lambda _j}} \right) $ 0.259 0.254 0.255 0.288 0.249
    $ {\xi ^ - }\left( {{\lambda _j}} \right) $ 0.255 0.248 0.249 0.286 0.242
    下载: 导出CSV

    表  11  总体产品概念设计方案3个设计层次开发得分矩阵

    方案模块部件角度视图物理属性
    D10.7030.5120.794
    D20.7160.6080.843
    D30.6700.4330.548
    D40.8410.7390.925
    D50.4620.5970.472
    D60.6520.7670.518
    下载: 导出CSV

    表  12  4种方法结果对比表

    决策方法决策误差/%运算时间/min
    CHD+PFS+PT5.611.75
    CHD7.821.34
    PFS10.320.89
    IFS11.940.68
    下载: 导出CSV
  • [1] 吴扬东, 张太华, 刘丹, 等. 复杂产品设计方案的数据驱动多属性优化决策[J]. 中国机械工程, 2020, 31(7): 865-870 doi: 10.3969/j.issn.1004-132X.2020.07.012

    WU Y D, ZHANG T H, LIU D, et al. Data-driven multi-attribute optimization decision-making for complex product design schemes[J]. China Mechanical Engineering, 2020, 31(7): 865-870 (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.07.012
    [2] 陈健, 莫蓉, 余隋怀, 等. 云环境下众包产品造型设计方案多目标群体决策[J]. 浙江大学学报(工学版), 2019, 53(8): 1517-1524

    CHEN J, MO R, YU S H, et al. Multi-objective group decision method for crowdsourcing product modeling design scheme in cloud environment[J]. Journal of Zhejiang University (Engineering Science), 2019, 53(8): 1517-1524 (in Chinese)
    [3] INOUE M, LINDOW K, STARK R, et al. Decision-making support for sustainable product creation[J]. Advanced Engineering Informatics, 2012, 26(4): 782-792 doi: 10.1016/j.aei.2012.07.002
    [4] LENNON E, FARR J, BESSER R. Evaluation of multi-attribute decision making systems applied during the concept design of new microplasma devices[J]. Expert Systems with Applications, 2013, 40(16): 6321-6329 doi: 10.1016/j.eswa.2013.05.049
    [5] 宫金良, 滕学芳, 张彦斐. 一种基于理想度与粗糙数多属性决策的复杂非线性系统设计方法[J]. 中国机械工程, 2020, 31(4): 465-471+481 doi: 10.3969/j.issn.1004-132X.2020.04.014

    GONG J L, TENG X F, ZHANG Y F. A design method of complex nonlinear systems based on ideal degree and rough number multiple attribute decision[J]. China Mechanical Engineering, 2020, 31(4): 465-471+481 (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.04.014
    [6] 陈英, 敬石开, 王业东. 基于设计理性的群体一致性产品方案决策方法[J]. 计算机辅助设计与图形学学报, 2018, 30(7): 1356-1365

    CHEN Y, JING S K, WANG Y D. Group decision making method with consensus of product scheme based on design rationale[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30(7): 1356-1365 (in Chinese)
    [7] 孙朋, 张骏, 曾红斌. 基于前景理论的一种犹豫模糊多属性群决策方法[J]. 西北工业大学学报, 2018, 36(4): 735-741 doi: 10.3969/j.issn.1000-2758.2018.04.019

    SUI P, ZHANG J, ZENG H B. A hesitant fuzzy multi-attribute group decision making method based on prospect theory[J]. Journal of Northwestern Polytechnical University, 2018, 36(4): 735-741 (in Chinese) doi: 10.3969/j.issn.1000-2758.2018.04.019
    [8] KRUSE B, SHEA K. Design library solution patterns in SysML for concept design and simulation[J]. Procedia CIRP, 2016, 50: 695-700 doi: 10.1016/j.procir.2016.04.132
    [9] QI J, HU J, PENG Y H. New design concept evaluation method involving customer preferences based on rough distance to redefined ideal solution[J]. Computers & Industrial Engineering, 2020, 147: 106677
    [10] TIWARI V, JAIN P K, TANDON P. An integrated Shannon entropy and TOPSIS for product design concept evaluation based on bijective soft set[J]. Journal of Intelligent Manufacturing, 2019, 30(4): 1645-1658 doi: 10.1007/s10845-017-1346-y
    [11] SINHA K, HAN S, SUH E S. Design structure matrix-based modularization approach for complex systems with multiple design constraints[J]. Systems Engineering, 2020, 23(2): 211-220 doi: 10.1002/sys.21518
    [12] 李盼, 任延昭, 王国新. 基于产品基因的无人探测小车概念设计方法[J]. 北京理工大学学报, 2019, 39(5): 454-459

    LI P, REN Y Z, WANG G X. A genetics-based conceptual design methodology of unmanned probe cars[J]. Transactions of Beijing Institute of Technology, 2019, 39(5): 454-459 (in Chinese)
    [13] CHEN C Y, LIAO G Y, LIN K S. An attribute-based and object-oriented approach with system implementation for change impact analysis in variant product design[J]. Computer-Aided Design, 2015, 62: 203-217 doi: 10.1016/j.cad.2014.11.006
    [14] HWANG D, PARK W. Design heuristics set for X: a design aid for assistive product concept generation[J]. Design Studies, 2018, 58: 89-126 doi: 10.1016/j.destud.2018.04.003
    [15] 武春龙, 朱天明, 张鹏, 等. 基于功能模型和层次分析法的智能产品服务系统概念方案构建[J]. 中国机械工程, 2020, 31(7): 853-864+870 doi: 10.3969/j.issn.1004-132X.2020.07.011

    WU C L, ZHU T M, ZHANG P, et al. Conceptual scheme construction of smart PSS based on functional model and AHP[J]. China Mechanical Engineering, 2020, 31(7): 853-864+870 (in Chinese) doi: 10.3969/j.issn.1004-132X.2020.07.011
    [16] WU Y F B, BOT R S, Chen X, et al. Improving concept hierarchy development for web returned documents using automatic classification[C]//Proceedings of the 2005 International Conference on Internet Computing. Athens: ICOMP, 2005: 99-105
    [17] 张雷, 杨凯, 张城, 等. 基于属性映射的产品绿色设计方案优化方法[J]. 机械工程学报, 2019, 55(17): 153-161 doi: 10.3901/JME.2019.17.153

    ZHANG L, YANG K, ZHANG C, et al. Optimization method of product green design scheme based on attribute mapping[J]. Journal of Mechanical Engineering, 2019, 55(17): 153-161 (in Chinese) doi: 10.3901/JME.2019.17.153
    [18] YAGER R R, ABBASOV A M. Pythagorean membership grades, complex numbers, and decision making[J]. International Journal of Intelligent Systems, 2013, 28(5): 436-452 doi: 10.1002/int.21584
    [19] ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96 doi: 10.1016/S0165-0114(86)80034-3
    [20] 赵晓冬, 王飞, 张妮. 一种基于前景理论的毕达哥拉斯犹豫模糊不确定语言ELECTRE多属性决策方法[J]. 控制与决策, 2020, 35(9): 2245-2251

    ZHAO X D, WANG F, ZHANG N. Method for multi-attribute decision-making with Pythagorean hesitant fuzzy uncertain linguistic ELECTRE based on prospect theory[J]. Control and Decision, 2020, 35(9): 2245-2251 (in Chinese)
    [21] AKRAM M, ALI G. Hybrid models for decision-making based on rough pythagorean fuzzy bipolar soft information[J]. Granular Computing, 2020, 5(1): 1-15 doi: 10.1007/s41066-018-0132-3
    [22] FEI L G, DENG Y. Multi-criteria decision making in Pythagorean fuzzy environment[J]. Applied Intelligence, 2020, 50(2): 537-561 doi: 10.1007/s10489-019-01532-2
    [23] RANI P, MISHRA A R, REZAEI G, et al. Extended pythagorean fuzzy TOPSIS method based on similarity measure for sustainable recycling partner selection[J]. International Journal of Fuzzy Systems, 2020, 22(2): 735-747 doi: 10.1007/s40815-019-00689-9
    [24] KAHNEMAN D, TVERSKY A. Prospect theory: an analysis of decision under risk[J]. Econometrica, 1979, 47(2): 263-291 doi: 10.2307/1914185
    [25] TVERSKY A, KAHNEMAN D. Advances in prospect theory: cumulative representation of uncertainty[J]. Journal of Risk and Uncertainty, 1992, 5(4): 297-323 doi: 10.1007/BF00122574
    [26] NIE R X, WANG J Q. Prospect Theory-based consistency recovery strategies with multiplicative probabilistic linguistic preference relations in managing group decision making[J]. Arabian Journal for Science and Engineering, 2020, 45(3): 2113-2130 doi: 10.1007/s13369-019-04053-9
    [27] TIAN Z P, NIE R X, WANG J Q, et al. A prospect theory-based QUALIFLEX for uncertain linguistic Z-number multi-criteria decision-making with unknown weight information[J]. Journal of Intelligent & Fuzzy Systems, 2020, 38(2): 1775-1787
    [28] SHEPARD R N. Toward a universal law of generalization for psychological science[J]. Science, 1987, 237(4820): 1317-1323 doi: 10.1126/science.3629243
    [29] BORAN F E, GENÇ S, KURT M, et al. A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method[J]. Expert Systems with Applications, 2009, 36(8): 11363-11368 doi: 10.1016/j.eswa.2009.03.039
    [30] OCAMPO L A, LABRADOR J J T, JUMAO-AS A M B, et al. Integrated multiphase sustainable product design with a hybrid quality function deployment – multi-attribute decision-making (QFD-MADM) framework[J]. Sustainable Production and Consumption, 2020, 24: 62-78 doi: 10.1016/j.spc.2020.06.013
    [31] MOHANTY P P, MAHAPATRA S S, MOHANTY A, et al. A novel multi-attribute decision making approach for selection of appropriate product conforming ergonomic considerations[J]. Operations Research Perspectives, 2018, 5: 82-93 doi: 10.1016/j.orp.2018.01.004
    [32] LIU P, CHEN S M, WANG Y. Multiattribute group decision making based on intuitionistic fuzzy partitioned Maclaurin symmetric mean operators[J]. Information Sciences, 2020, 512: 830-854 doi: 10.1016/j.ins.2019.10.013
    [33] ZENG S Z, CHEN S M, FAN K Y. Interval-valued intuitionistic fuzzy multiple attribute decision making based on nonlinear programming methodology and TOPSIS method[J]. Information Sciences, 2020, 506: 424-442 doi: 10.1016/j.ins.2019.08.027
  • 加载中
图(7) / 表(12)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  35
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-12
  • 刊出日期:  2023-02-04

目录

    /

    返回文章
    返回