留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃料电池极板材料及制备技术的研究热点与演进

肖罡 孙卓 李时春 杨钦文 张鹏飞

肖罡,孙卓,李时春, 等. 燃料电池极板材料及制备技术的研究热点与演进[J]. 机械科学与技术,2022,41(11):1780-1793 doi: 10.13433/j.cnki.1003-8728.20200536
引用本文: 肖罡,孙卓,李时春, 等. 燃料电池极板材料及制备技术的研究热点与演进[J]. 机械科学与技术,2022,41(11):1780-1793 doi: 10.13433/j.cnki.1003-8728.20200536
XIAO Gang, SUN Zhuo, LI Shichun, YANG Qinwen, ZHANG Pengfei. Research Hotspots and Evolution of Fuel Cell Plate Materials and Fabrication Technology[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1780-1793. doi: 10.13433/j.cnki.1003-8728.20200536
Citation: XIAO Gang, SUN Zhuo, LI Shichun, YANG Qinwen, ZHANG Pengfei. Research Hotspots and Evolution of Fuel Cell Plate Materials and Fabrication Technology[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1780-1793. doi: 10.13433/j.cnki.1003-8728.20200536

燃料电池极板材料及制备技术的研究热点与演进

doi: 10.13433/j.cnki.1003-8728.20200536
基金项目: 国家自然科学基金面上项目(51975196,52075159)、国家金属材料近净成形工程技术研究中心开放基金项目(2020013)、湖南省自然科学基金项目(2022JJ30019)、湖南省教育厅科学研究项目(21A0301)及江西省教育厅科学研究项目(GJJ203001、GJJ191283)
详细信息
    作者简介:

    肖罡(1983−),教授,博士生导师,研究方向为金属材料高温变形理论及高效成形技术研究,xg_1221@163.com

    通讯作者:

    杨钦文,副教授,博士,yangqw@hnu.edu.cn

  • 中图分类号: TM911.48

Research Hotspots and Evolution of Fuel Cell Plate Materials and Fabrication Technology

  • 摘要: 针对Web of Science核心合集数据库中2000年1月至2020年10月的燃料电池双极板材料与制备工艺文献进行计量学分析,并利用CiteSpace可视化分析工具绘制了核心研究国家、作者、研究机构及关键词演进的结构图谱。结果表明:双极板研究热点主要是金属材料双极板的耐腐蚀性与高聚物基复合材料双极板的导电性。金属极板耐蚀性问题存在离子污染、基体材料与涂层技术等研究内容,离子污染研究揭示了极板腐蚀的负面影响,基体材料与涂层技术研究则是去通过调整材料成分或制备工艺上提升性能。高聚物复合材料导电性问题的研究内容是高聚物基体、导电填料以及复合材料导电率等预测模型,导电率预测模型是研究复合材料组成的重要理论依据。
  • 图  1  2000年 ~ 2020年期间燃料电池极板研究发文量和关键事件对照图

    图  2  双极板材料与制备工艺研究的国际合作网络

    图  3  双极板材料与制备工艺研究的学者合作网络

    图  4  双极板材料与制备工艺研究的机构合作网络

    图  5  极板材料与制造名词性术语可视化分析结果

    图  6  Cr/a-C互锁结构的耐腐蚀机理示意图[41]

    表  1  燃料电池极板材料与制造研究突发性强度前10被引文献

    序号文献题目作者发表年份突发性
    时段
    突发性强度
    1 Corrosion of metal bipolar plates for PEM fuel cells: a review
    (质子交换膜燃料电池金属双极板腐蚀:综述)
    Antunes 2010 2012 ~ 2019 22.7974
    2 Stainless steel as a bipolar plate material for solid polymer fuel cells
    (固体聚合物燃料电池不锈钢双极板)
    Davies
    2000 2002 ~ 2008 21.0658
    3 Metal bipolar plates for PEM fuel cell:a review
    (质子交换膜燃料电池燃料电池金属双极板:综述)
    Kyu
    2007 2015 ~ 2015 19.9293
    4 Bipolar plate materials for solid polymer fuel cells
    (用于固体聚合物燃料电池的双极板材料)
    Davies
    2000 2003 ~ 2008 17.9813
    5 Use of stainless steel for cost competitive bipolar plates in the SPFC
    (低成本不锈钢固体聚合物燃料电池极板)
    Makkus 2000 2002 ~ 2008 17.0442
    6 New materials for polymer electrolyte membrane fuel cell current collectors (质子交换膜燃料电池的双极板新材料) Hentall
    1999 2000 ~ 2007 16.7959
    7 Bipolar plate materials development using Fe-based alloys for solid polymer fuel cells
    (使用铁基合金开发用于固体聚合物燃料电池的双极板材料)
    Hornung 1998 2000 ~ 2006 16.6427
    8 Investigations on novel low-cost graphite composite bipolar plates
    (新型低成本石墨复合双极板的研究)
    Scholta
    1999 2001~ 2007 15.8580
    9 Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells (质子交换膜燃料电池双极板不锈钢材料) Wang
    2004 2005 ~ 2011 15.6200
    10 Metallic bipolar plates for PEM fuel cells
    (用于PEM燃料电池的金属双极板)
    Wind
    2002 2003 ~ 2010 15.5501
    下载: 导出CSV

    表  2  基于LLR算法的名词性术语聚类分析结果

    序号聚类标签名称研究类别
    #0 Corrosion behavior( 腐蚀行为) 性能
    #1 Direct methanol fuel cell (直接甲醇燃料电池) 燃料电池
    #2 Compressed expanded graphite (压缩膨胀石墨) 复合材料极板
    #3 Electrical stability (电稳定性) 性能
    #4 Carbon filler (碳填料) 复合材料极板
    #5 Electrode durability (电极耐久性) 性能
    #6 CrN coating CrN(涂层) 金属极板
    #7 Nitrided stainless steel alloy foil (氮化物不锈钢合金箔) 金属极板
    #8 Zinc cerium( 锌铈) 液流电池
    #9 Solid polymer fuel cell (固体聚合物燃料电池) 燃料电池
    下载: 导出CSV

    表  3  基体与涂层材料的性能特征及腐蚀电流密度和界面接触电阻

    类别涂层材料基底材料涂层工艺实验环境腐蚀电流密度/
    (μA∙cm−2
    界面接触电阻/
    (mΩ∙cm2
    文献
    Metal nitride coatingting CrN SS316L EBPVD 1M H2SO4 at 70 °C purged with H2 1.41 21.8
    (274.4 N/cm2*
    [21]
    purged with O2 1.31
    TiN purged with H2 4.07 35.0
    (274.4 N/cm2*
    purged with O2 31.50
    TiAlN purged with H2 317.00 7.5
    (274.4 N/cm2*
    purged with O2 18.6
    CrN/Cr SS316L UBMS 0.001M H2SO4 + 2 ppm F at 60 °C purged with air 0.09 <6
    (100 ~ 500 N/cm2*
    [22]
    CrN Ni Electrodeposition propylene carbonate + 1 M tetraethylammonium tetrafluoroborate at 30 °C [23]
    NbN SS304 PSDA 0.05M H2SO4 + 2 ppm Fat 70 °C purged with H2 0.127 9.26
    (140 N/cm2*
    [24]
    purged with air 0.071
    TaN/Ta SS430 Reactive magnetron sputtering 85% H3PO4 purged with air at 80 °C 0.79 9.03
    (140 N/cm2*
    [25]
    at 130 °C 0.93
    Metal
    carbide
    Coating
    TiC SS304 HEMA 1M H2SO4 at 25 °C with air 0.034 [26]
    Cr-C SS316L Pulsed bias arc ion plating 0.5M H2SO4 + 5 ppm F at 25 °C 0.1 6.86-8.72
    (0.2-1.5 MPa)*
    [27]
    Cr-C Cu Electrodeposition 3.5 wt% NaCl at 25 °C 0.64 <10
    (150 N∙cm−2*
    [28]
    Cr-C SS316L CFUBMSIP 0.5M H2SO4 + 5 ppm HF at 70 °C purged with air 1.046 1.4
    (1.4 MPa)*
    [29]
    NbC SS304 PSDA 0.5M H2SO4 + 2 ppm HF at 80 °C purged with H2 0.058 8.47
    (140 N/cm2*
    [30]
    purged with air 0.051
    Metal
    oxide
    Coating
    Y2O3/Au
    Y2O3
    Y2O3 / Co3O4
    SS430 Electrodeposition <100
    (2.6 MPa)*
    [31]
    RuO2 30 wt% Cr ferritic
    stainless steel
    Electrochemical 1M H2SO4 + 2 ppm F at 70 °C purged with air 1.0 2.4
    (150 N∙cm−2*
    [32]
    SnO2 SS444 CVD 1M H2SO4 + 2 ppm F at 70 °C purged with H2 8 200 ~ 400
    (150 N∙cm−2*
    [33]
    SS446 3.5
    PbO2 SS316L Electrochemical 1M H2SO4 + 2 ppm F at 80 °C 8 [34]
    Graphene
    coating
    Graphene Al Dipcoating 0.5 M NaCl 8.324 × 10−3 [35]
    Graphene 304 SS CVD 3.5 wt% NaCl [36]
    Graphene SS Ni/304 CVD 3.5 wt% NaCl at 25 °C 0.161 36
    (140 N/cm2*
    [37]
    Reduced graphene oxide(rGO) Al Polyvinyl alcohol 0.5 M H2SO4 3 × 10−3 [38]
    Amorphous
    Carbon
    coating
    a-C SS304 CFUBMSIP 5.4
    (1.5 MPa)*
    [40]
    Cr / a-C SS304 Direct current magnetron sputtering 0.5M H2SO4 + 5 ppm HF 0.894 16.65
    (150 N/cm2*
    [41]
    ZreC / a-C SS316L CFUBMSIP 0.5M H2SO4 + 5 ppm HF at 70 °C purged with air 0.49 3.63
    (1.4 MPa)*
    [42]
    TiCx / a-C SS316L CFUBMSIP 1M H2SO4 + 0.1 ppm HF at 80 °C bubbled with air 0.32 1.85
    (1.4 MPa)*
    [43]
    Polymer
    based
    composite
    Coating
    PP/carbon fiber/carbon black Al6061 Compression molding technique 1M H2SO4 + 2 ppm HF at 70 °C purged with H2 3.6 21
    (200 N/cm2*
    [44]
    purged with O2 3.3
    Graphite/carbon black/epoxy binder SS316L Spraying and hot-pressing techniques 1M H2SO4 at 75 °C 5.42 9.8
    (125 N/cm2*
    [45]
    Phosphomolybdic acid doped PANI coating SS304 Electropolymerization 1M H2SO4 26.4 [46]
    PANI SS316L Electrodeposition 0.5 mol/L H2SO4 + 2 ppm HF at 80 °C 0.093 [47]
    注: 标注*的数值表示极板夹紧力。
    下载: 导出CSV

    表  4  TiCx / a-C纳米涂层的溅射时间参数[43] min

    样品编号ABCD
    60 V a-C Layer 60 40 20 0
    60 V→300 V Interface 0 1 1 0
    300 V a-C Layer 0 19 39 60
    下载: 导出CSV
  • [1] 康启平, 张国强, 刘艳秋, 等. 质子交换膜燃料电池复合材料双极板研究进展[J]. 中北大学学报(自然科学版), 2019, 40(5): 414-420+426 doi: 10.3969/j.issn.1673-3193.2019.05.006

    KANG Q P, ZHANG G Q, LIU Y Q, et al. Research progress of composite bipolar plates for proton exchange membrane fuel cells[J]. Journal of North University of China (Natural Science Edition), 2019, 40(5): 414-420+426 (in Chinese) doi: 10.3969/j.issn.1673-3193.2019.05.006
    [2] CHEN C M. Science mapping: a systematic review of the literature[J]. Journal of Data and Information Science, 2017, 2(2): 1-40 doi: 10.1515/jdis-2017-0006
    [3] 李杰, 陈超美. Citespace: 科技文本挖掘及可视化[M]. 北京: 首都经济贸易大学出版社, 2017

    LI J, CHEN C M. Citespace: text mining and visualization scientific literature[M]. Beijing: Capital Economic and Trade University Press, 2017 (in Chinese)
    [4] CAWKELL T. Mapping scientific frontiers: the quest for knowledge visualization[J]. Journal of Documentation, 2003, 59(3): 364-369 doi: 10.1108/00220410310472554
    [5] HENTALL P L, LAKEMAN J B, MEPSTED G O, et al. New materials for polymer electrolyte membrane fuel cell current collectors[J]. Journal of Power Sources, 1999, 80(1-2): 235-241 doi: 10.1016/S0378-7753(98)00264-X
    [6] JIN C K, LEE K H, KANG C G. Performance and characteristics of titanium nitride, chromium nitride, multi-coated stainless steel 304 bipolar plates fabricated through a rubber forming process[J]. International Journal of Hydrogen Energy, 2015, 40(20): 6681-6688 doi: 10.1016/j.ijhydene.2015.03.080
    [7] ANTUNES R A, OLIVEIRA M C L, ETT G, et al. Corrosion of metal bipolar plates for PEM fuel cells: a review[J]. International Journal of Hydrogen Energy, 2010, 35(8): 3632-3647 doi: 10.1016/j.ijhydene.2010.01.059
    [8] EHTESHAMI S M M, TAHERI A, CHAN S H. A review on ions induced contamination of polymer electrolyte membrane fuel cells, poisoning mechanisms and mitigation approaches[J]. Journal of Industrial and Engineering Chemistry, 2016, 34: 1-8 doi: 10.1016/j.jiec.2015.10.034
    [9] SULEK M, ADAMS J, KABERLINE S, et al. In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance[J]. Journal of Power Sources, 2011, 196(21): 8967-8972 doi: 10.1016/j.jpowsour.2011.01.086
    [10] OKADA T. Effect of ionic contaminants[M]//VIELSTICH W, GASTEIGER H A, LAMM A, et al. Handbook of Fuel Cells. New York: John Wiley & Sons, Ltd. , 2010
    [11] WANG H L, SWEIKART M A, TURNER J A. Stainless steel as bipolar plate material for polymer electrolyte membrane fuel cells[J]. Journal of Power Sources, 2003, 115(2): 243-251 doi: 10.1016/S0378-7753(03)00023-5
    [12] JIA R L, DONG S M, HASEGAWA T, et al. Contamination and moisture absorption effects on the mechanical properties of catalyst coated membranes in PEM fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(8): 6790-6797 doi: 10.1016/j.ijhydene.2012.01.063
    [13] WANG H, TURNER J A. Reviewing metallic PEMFC bipolar plates[J]. Fuel Cells, 2010, 10(4): 510-519 doi: 10.1002/fuce.200900187
    [14] DAVIES D P, ADCOCK P L, TURPIN M, et al. Bipolar plate materials for solid polymer fuel cells[J]. Journal of Applied Electrochemistry, 2000, 30(1): 101-105 doi: 10.1023/A:1003831406406
    [15] IVERSEN A K. Stainless steels in bipolar plates-surface resistive properties of corrosion resistant steel grades during current loads[J]. Corrosion Science, 2006, 48(5): 1036-1058 doi: 10.1016/j.corsci.2005.05.012
    [16] LEE S J, HUANG C H, CHEN Y P. Investigation of PVD coating on corrosion resistance of metallic bipolar plates in PEM fuel cell[J]. Journal of Materials Processing Technology, 2003, 140(1-3): 688-693 doi: 10.1016/S0924-0136(03)00743-X
    [17] EL-ENIN S A A, ABDEL-SALAM O E, EL-ABD H, et al. New electroplated aluminum bipolar plate for PEM fuel cell[J]. Journal of Power Sources, 2008, 177(1): 131-136 doi: 10.1016/j.jpowsour.2007.11.042
    [18] HUNG Y, TAWFIK H, MAHAJAN D. Durability and characterization studies of chromium carbide coated aluminum fuel cell stack[J]. International Journal of Hydrogen Energy, 2016, 41(28): 12273-12284 doi: 10.1016/j.ijhydene.2016.05.136
    [19] ZHANG D M, WANG Z Y, HUANG K K. Composite coatings with in situ formation for Fe-Ni-Cr alloy as bipolar plate of PEMFC[J]. International Journal of Hydrogen Energy, 2013, 38(26): 11379-11391 doi: 10.1016/j.ijhydene.2013.06.112
    [20] AUKLAND N, BOUDINA A, EDDY D S, et al. Alloys that form conductive and passivating oxides for proton exchange membrane fuel cell bipolar plates[J]. Journal of Materials Research, 2004, 19(6): 1723-1729 doi: 10.1557/JMR.2004.0216
    [21] WANG L, NORTHWOOD D O, NIE X, et al. Corrosion properties and contact resistance of TiN, TiAlN and CrN coatings in simulated proton exchange membrane fuel cell environments[J]. Journal of Power Sources, 2010, 195(12): 3814-3821 doi: 10.1016/j.jpowsour.2009.12.127
    [22] PARK Y C, LEE S H, KIM S K, et al. Corrosion properties and cell performance of CrN/Cr-coated stainless steel 316L as a metal bipolar plate for a direct methanol fuel cell[J]. Electrochimica Acta, 2011, 56(22): 7602-7609 doi: 10.1016/j.electacta.2011.06.080
    [23] PARK J, DILASARI B, KIM Y, et al. Corrosion investigation of nitrided chromium coating layer on nickel in non-aqueous electrolytes[J]. Materials Chemistry and Physics, 2014, 148(1-2): 444-448 doi: 10.1016/j.matchemphys.2014.08.012
    [24] WANG L X, SUN J C, SUN J, et al. Niobium nitride modified AISI 304 stainless steel bipolar plate for proton exchange membrane fuel cell[J]. Journal of Power Sources, 2012, 199: 195-200 doi: 10.1016/j.jpowsour.2011.10.034
    [25] WANG L X, LI L, LIU H Y, et al. Polylaminate TaN/Ta coating modified ferritic stainless steel bipolar plate for high temperature proton exchange membrane fuel cell[J]. Journal of Power Sources, 2018, 399: 343-349 doi: 10.1016/j.jpowsour.2018.07.122
    [26] REN Y J, ZENG C L. Corrosion protection of 304 stainless steel bipolar plates using TiC films produced by high-energy micro-arc alloying process[J]. Journal of Power Sources, 2007, 171(2): 778-782 doi: 10.1016/j.jpowsour.2007.06.075
    [27] FU Y, LIN G Q, HOU M, et al. Carbon-based films coated 316L stainless steel as bipolar plate for proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(1): 405-409 doi: 10.1016/j.ijhydene.2008.10.068
    [28] LU C E, PU N W, HOU K H, et al. The effect of formic acid concentration on the conductivity and corrosion resistance of chromium carbide coatings electroplated with trivalent chromium[J]. Applied Surface Science, 2013, 282: 544-551 doi: 10.1016/j.apsusc.2013.06.008
    [29] ZHAO Y, WEI L, YI P Y, et al. Influence of Cr-C film composition on electrical and corrosion properties of 316L stainless steel as bipolar plates for PEMFCs[J]. International Journal of Hydrogen Energy, 2016, 41(2): 1142-1150 doi: 10.1016/j.ijhydene.2015.10.047
    [30] WANG L X, SUN J C, KANG B, et al. Electrochemical behaviour and surface conductivity of niobium carbide-modified austenitic stainless steel bipolar plate[J]. Journal of Power Sources, 2014, 246: 775-782 doi: 10.1016/j.jpowsour.2013.08.025
    [31] TONDO E, BONIARDI M, CANNOLETTA D, et al. Electrodeposition of yttria/cobalt oxide and yttria/gold coatings onto ferritic stainless steel for SOFC interconnects[J]. Journal of Power Sources, 2010, 195(15): 4772-4778 doi: 10.1016/j.jpowsour.2010.02.055
    [32] KIM K M, KIM J H, LEE Y Y, et al. Electrodeposition of ruthenium oxide on ferritic stainless steel bipolar plate for polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy, 2012, 37(2): 1653-1660 doi: 10.1016/j.ijhydene.2011.10.028
    [33] WANG H L, TURNER J A. SnO2: F coated ferritic stainless steels for PEM fuel cell bipolar plates[J]. Journal of Power Sources, 2007, 170(2): 387-394 doi: 10.1016/j.jpowsour.2007.04.028
    [34] ALLAHKARAM S R, MOHAMMADI N. Corrosion behavior of two candidate PEMFC's bipolar plate materials[J]. Anti-Corrosion Methods and Materials, 2017, 64(3): 293-298 doi: 10.1108/ACMM-05-2015-1540
    [35] LIU J H, HUA L, LI S M, et al. Graphene dip coatings: an effective anticorrosion barrier on aluminum[J]. Applied Surface Science, 2015, 327: 241-245 doi: 10.1016/j.apsusc.2014.11.187
    [36] STOOT A C, CAMILLI L, SPIEGELHAUER S A, et al. Multilayer graphene for long-term corrosion protection of stainless steel bipolar plates for polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2015, 293: 846-851 doi: 10.1016/j.jpowsour.2015.06.009
    [37] PU N W, SHI G N, LIU Y M, et al. Graphene grown on stainless steel as a high-performance and ecofriendly anti-corrosion coating for polymer electrolyte membrane fuel cell bipolar plates[J]. Journal of Power Sources, 2015, 282: 248-256 doi: 10.1016/j.jpowsour.2015.02.055
    [38] JANG H, KIM J H, KANG H, et al. Reduced graphene oxide as a protection layer for Al[J]. Applied Surface Science, 2017, 407: 1-7 doi: 10.1016/j.apsusc.2017.02.041
    [39] 张海峰. PEMFC不锈钢双极板表面改性碳基薄膜及其特性研究[D]. 杭州: 浙江工业大学, 2015

    ZHANG H F. Study on surface modification and characterization of carbon-based films on PEMFC stainless steel bipolar plate[D]. Hangzhou: Zhejiang University of Technology, 2015 (in Chinese)
    [40] YI P Y, PENG L F, FENG L Z, et al. Performance of a proton exchange membrane fuel cell stack using conductive amorphous carbon-coated 304 stainless steel bipolar plates[J]. Journal of Power Sources, 2010, 195(20): 7061-7066 doi: 10.1016/j.jpowsour.2010.05.019
    [41] WU M G, LU C D, HONG T, et al. Chromium interlayer amorphous carbon film for 304 stainless steel bipolar plate of proton exchange membrane fuel cell[J]. Surface and Coatings Technology, 2016, 307: 374-381 doi: 10.1016/j.surfcoat.2016.07.069
    [42] BI F F, PENG L F, YI P Y, et al. Multilayered Zr-C/a-C film on stainless steel 316L as bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2016, 314: 58-65 doi: 10.1016/j.jpowsour.2016.02.078
    [43] YI P Y, ZHANG W X, BI F F, et al. Enhanced corrosion resistance and interfacial conductivity of TiCx/a-C nanolayered coatings via synergy of substrate bias voltage for bipolar plates applications in PEMFCs[J]. ACS Applied Materials & Interfaces, 2018, 10(22): 19087-19096
    [44] LEE C H, LEE Y B, KIM K M, et al. Electrically conductive polymer composite coating on aluminum for PEM fuel cells bipolar plate[J]. Renewable Energy, 2013, 54: 46-50 doi: 10.1016/j.renene.2012.08.071
    [45] HUSBY H, KONGSTEIN O E, OEDEGAARD A, et al. Carbon-polymer composite coatings for PEM fuel cell bipolar plates[J]. International Journal of Hydrogen Energy, 2014, 39(2): 951-957 doi: 10.1016/j.ijhydene.2013.10.115
    [46] GAO Y Z, SYED J A, LU H B, et al. Anti-corrosive performance of electropolymerized phosphomolybdic acid doped PANI coating on 304SS[J]. Applied Surface Science, 2016, 360: 389-397 doi: 10.1016/j.apsusc.2015.11.029
    [47] LI P P, DING X N, YANG Z Y, et al. Electrochemical synthesis and characterization of polyaniline-coated PEMFC metal bipolar plates with improved corrosion resistance[J]. Ionics, 2018, 24(4): 1129-1137 doi: 10.1007/s11581-017-2274-8
    [48] DU C, MING P W, HOU M, et al. The preparation technique optimization of epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells[J]. Journal of Power Sources, 2010, 195(16): 5312-5319 doi: 10.1016/j.jpowsour.2010.03.005
    [49] HSIAO M C, LIAO S H, YEN M Y, et al. Effect of graphite sizes and carbon nanotubes content on flowability of bulk-molding compound and formability of the composite bipolar plate for fuel cell[J]. Journal of Power Sources, 2010, 195(17): 5645-5650 doi: 10.1016/j.jpowsour.2010.03.065
    [50] HSIAO M C, LIAO S H, YEN M Y, et al. Preparation and properties of a graphene reinforced nanocomposite conducting plate[J]. Journal of Materials Chemistry, 2010, 20(39): 8496-8505 doi: 10.1039/c0jm01679a
    [51] KIM N H, KUILA T, KIM K M, et al. Material selection windows for hybrid carbons/poly(phenylene sulfide) composite for bipolar plates of fuel cell[J]. Polymer Testing, 2012, 31(4): 537-545 doi: 10.1016/j.polymertesting.2012.02.006
    [52] NAJI A, KRAUSE B, PÖTSCHKE P, et al. Extruded polycarbonate/Di-allyl phthalate composites with ternary conductive filler system for bipolar plates of polymer electrolyte membrane fuel cells[J]. Smart Materials and Structures, 2019, 28(6): 064004 doi: 10.1088/1361-665X/ab19cb
    [53] RADZUAN N A M, SULONG A B, HUSAINI T, et al. Fabrication of multi-filler MCF/MWCNT/SG-based bipolar plates[J]. Ceramics International, 2019, 45(6): 7413-7418 doi: 10.1016/j.ceramint.2019.01.028
    [54] ANTUNES R A, DE OLIVEIRA M C L, ETT G, et al. Carbon materials in composite bipolar plates for polymer electrolyte membrane fuel cells: a review of the main challenges to improve electrical performance[J]. Journal of Power Sources, 2011, 196(6): 2945-2961 doi: 10.1016/j.jpowsour.2010.12.041
    [55] RADZUAN N A M, ZAKARIA M Y, SULONG A B, et al. The effect of milled carbon fibre filler on electrical conductivity in highly conductive polymer composites[J]. Composites Part B:Engineering, 2017, 110: 153-160 doi: 10.1016/j.compositesb.2016.11.021
    [56] BARTON R L, KEITH J M, KING J A. Development and modeling of electrically conductive carbon filled liquid crystal polymer composites for fuel cell bipolar plate applications[J]. Journal of New Materials for Electrochemical Systems, 2007, 10(4): 225-229
    [57] RADZUAN N A M, SULONG A B, SOMALU M R. Electrical properties of extruded milled carbon fibre and polypropylene[J]. Journal of Composite Materials, 2017, 51(22): 3187-3195 doi: 10.1177/0021998316688075
    [58] RADZUAN N A M, SULONG A B, HUI D, et al. Electrical conductivity performance of predicted modified fibre contact model for multi-filler polymer composite[J]. Polymers, 2019, 11(9): 1425 doi: 10.3390/polym11091425
    [59] RADZUAN N A M, SULONG A B, SOMALU M, et al. Fibre orientation effect on polypropylene/milled carbon fiber composites in the presence of carbon nanotubes or graphene as a secondary filler: application on PEM fuel cell bipolar plate[J]. International Journal of Hydrogen Energy, 2019, 44(58): 30618-30626 doi: 10.1016/j.ijhydene.2019.01.063
  • 加载中
图(6) / 表(4)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  61
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-25
  • 刊出日期:  2023-02-04

目录

    /

    返回文章
    返回