留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

正交试验法优化铜铝超声波焊接工艺研究

熊志林 张义福 陈朵云 张云

熊志林,张义福,陈朵云, 等. 正交试验法优化铜铝超声波焊接工艺研究[J]. 机械科学与技术,2022,41(4):634-638 doi: 10.13433/j.cnki.1003-8728.20200523
引用本文: 熊志林,张义福,陈朵云, 等. 正交试验法优化铜铝超声波焊接工艺研究[J]. 机械科学与技术,2022,41(4):634-638 doi: 10.13433/j.cnki.1003-8728.20200523
XIONG Zhilin, ZHANG Yifu, CHEN Duoyun, ZHANG Yun. Study on Optimal process in Ultrasonic Welding of Copper and Aluminum via Orthogonal Test Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 634-638. doi: 10.13433/j.cnki.1003-8728.20200523
Citation: XIONG Zhilin, ZHANG Yifu, CHEN Duoyun, ZHANG Yun. Study on Optimal process in Ultrasonic Welding of Copper and Aluminum via Orthogonal Test Method[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(4): 634-638. doi: 10.13433/j.cnki.1003-8728.20200523

正交试验法优化铜铝超声波焊接工艺研究

doi: 10.13433/j.cnki.1003-8728.20200523
基金项目: 湖南省自然科学基金项目(2021JJ60035)
详细信息
    作者简介:

    熊志林(1986−),副教授,硕士研究生,研究方向为异质金属焊接工艺,xzhilin123@163.com

    通讯作者:

    张义福,讲师,博士研究生, zhangyifulj@163.com

  • 中图分类号: TG453+.9

Study on Optimal process in Ultrasonic Welding of Copper and Aluminum via Orthogonal Test Method

  • 摘要: 为提高铜(Cu)和铝(Al)异种材料超声波焊接接头性能,采用正交试验法对0.3 mm厚的Cu/Al箔片进行超声波焊接试验设计,采用扫描电镜(SEM)、能谱仪(EDS)和X射线衍射仪(XRD)等方法对最优参数下获得接头的界面组织成分和断口形貌进行研究,并进行拉伸力测试,探讨了界面连接机理及断口机制。结果表明:最优焊接参数组合为焊接时间(T)900 ms、焊接功率(P)600 W、焊接压力(F)0.5 MPa、振幅(L)45 μm,在该参数下的接头拉伸力达到527.49 N,铜铝界面结合紧密并发生互扩散,生成了约4.5 μm厚的金属间化合物层(IMCs),接头界面连接强度主要是由界面原子扩散和机械互锁决定,接头断裂形式为韧-脆混合断裂模式。
  • 图  1  超声波焊接设备与焊极形状图

    图  2  拉伸测试试验装配图

    图  3  试验因素水平与拉伸力的分析趋势图

    图  4  最优参数下接头微观组织及EDS线扫描图

    图  5  最优参数下接头剪切断口形貌

    图  6  最优参数下接头断口X射线衍射分析

    表  1  纯铝和T2紫铜的热物理性能参数

    母材 热导率/
    (W·(m·K)−1)
    热膨胀系数/
    10−6K−1
    比热容/
    (J·(kg·K)−1)
    弹性模量/
    GPa
    纯铝 376.69 25.6 964.7 70
    T2紫铜 690.39 16.9 611 119
    下载: 导出CSV

    表  2  正交试验因素和水平参数表

    水平 因素
    焊接时间
    T/ms
    焊接功率
    P/W
    焊接压力
    F/MPa
    振幅
    L/μm
    1 500 500 0.3 35
    2 600 600 0.4 40
    3 700 700 0.5 45
    4 800
    5 900
    6 1000
    下载: 导出CSV

    表  3  L18(6×46)试验设计与结果

    试验号 水平
    组合
    因素 拉伸力
    平均值/N
    接头强度
    平均值/MPa
    焊接时
    间/ms
    焊接功
    率/W
    焊接压
    力/MPa
    振幅
    /μm
    1 1111 500 500 0.3 35 247.90 4.13
    2 1222 500 600 0.4 45 360.78 6.01
    3 1333 500 700 0.5 55 342.40 5.71
    4 2112 600 500 0.3 45 303.82 5.47
    5 2223 600 600 0.4 55 328.44 5.47
    6 2331 600 700 0.5 35 305.06 5.08
    7 3121 700 500 0.4 35 400.21 6.67
    8 3232 700 600 0.5 45 449.77 7.50
    9 3313 700 700 0.3 55 478.55 7.98
    10 4133 800 500 0.5 55 401.20 6.69
    11 4211 800 600 0.3 35 403.24 6.72
    12 4322 800 700 0.4 45 366.77 6.11
    13 5123 900 500 0.4 55 421.15 7.02
    14 5231 900 600 0.5 35 513.61 8.56
    15 5312 900 700 0.3 45 500.87 8.35
    16 6132 1000 500 0.5 45 436.64 7.28
    17 6213 1000 600 0.3 55 403.32 6.72
    18 6321 1000 700 0.4 35 433.53 7.23
    下载: 导出CSV

    表  4  L18(6×46)试验设计与结果

    水平 因素
    焊接时间/ms 焊接功率/W 焊接压力/MPa 振幅/μm
    1 317.0 368.5 389.6 383.9
    2 312.4 409.9 385.1 403.1
    3 442.8 404.5 408.1 395.8
    4 390.4
    5 478.5
    6 424.5
    Ri极差 166.1 41.4 23.0 19.2
    影响程度 1 2 3 4
    下载: 导出CSV

    表  5  正交试验方差分析结果

    项目 自由度
    DF
    各因素的
    离差平方和
    Adj SS
    各因素对应
    的均方值
    Adj MS
    各因素的
    统计量值F
    各因素的
    显著性概率P
    焊接时间/ms 5 69157 13831 9.86 0.007
    焊接功率/W 2 6078 3039 2.17 0.196
    焊接压力/MPa 2 1779 890 0.63 0.563
    振幅/μm 2 1126 563 0.40 0.686
    误差 6 8418 1403
    总计 17 86558
    下载: 导出CSV

    表  6  接头区的EDS 结果

    位置 ω(Cu) ω(Al) 可能相
    1 92.34% 7.66% Cu
    2 70.11% 29.89% Cu9Al4
    3 33.74% 66.26% CuAl2
    4 20.15% 79.85% Al+CuAl2
    5 6.35% 93.65% Al
    下载: 导出CSV

    表  7  图5所示EDS结果

    位置 ω(Cu) ω(Al)
    1 7.73% 92.27%
    2 19.32% 80.68%
    3 68.51% 31.49%
    4 91.67% 8.33%
    5 35.43% 64.57%
    下载: 导出CSV
  • [1] SHIN H S, DE LEON M. Mechanical performance and electrical resistance of ultrasonic welded multiple Cu-Al layers[J]. Journal of Materials Processing Technology, 2017, 241: 141-153 doi: 10.1016/j.jmatprotec.2016.11.004
    [2] DHARA S, DAS A. Impact of ultrasonic welding on multi-layered Al-Cu joint for electric vehicle battery applications: a layer-wise microstructural analysis[J]. Materials Science and Engineering:A, 2020, 791: 139795 doi: 10.1016/j.msea.2020.139795
    [3] SUN J H, YAN Q, LI Z G, et al. Effect of bevel angle on microstructure and mechanical property of Al/steel butt joint using laser welding-brazing method[J]. Materials & Design, 2016, 90: 468-477
    [4] 杨科林. 铜-铝异种金属搭接间隙及激光焊接参数对性能影响研究[J]. 机械研究与应用, 2020, 33(4): 213-215

    YANG K L. Study on the influence of Cu-Al intermetallic lap gap and laser welding parameters on performance[J]. Mechanical Research & Application, 2020, 33(4): 213-215 (in Chinese)
    [5] 薛志清, 胡绳荪, 左迪, 等. 铜铝异种金属激光焊接头组织特征及力学性能[J]. 焊接学报, 2013, 34(10): 51-54

    XUE Z Q, HU S S, ZUO D, et al. Microstructure and mechanical properties of laser welding joints of Copper and Aluminum dissimilar metals[J]. Transactions of the China Welding Institution, 2013, 34(10): 51-54 (in Chinese)
    [6] LI X, LIANG X, ZHANG Z X, et al. Cold joining to fabricate large size metallic glasses by the ultrasonic vibrations[J]. Scripta Materialia, 2020, 185: 100-104 doi: 10.1016/j.scriptamat.2020.03.059
    [7] DING Y L, WANG J G, ZHAO M, et al. Effect of annealing temperature on joints of diffusion bonded Mg/Al alloys[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(2): 251-258 doi: 10.1016/S1003-6326(18)64658-8
    [8] PENG H, CHEN D L, BAI X F, et al. Microstructure and mechanical properties of Mg-to-Al dissimilar welded joints with an Ag interlayer using ultrasonic spot welding[J]. Journal of Magnesium and Alloys, 2020, 8(2): 552-563 doi: 10.1016/j.jma.2020.04.001
    [9] 马成勇, 韩玉民, 敖三三, 等. 铝/铜异种金属超声波焊接工艺优化[J]. 焊接技术, 2018, 47(5): 46-50

    MA C Y, HAN Y M, AO S S, et al. Optimization of ultrasonic welding technology in Cu/Al dissimilar metals copper and aluminum[J]. Welding Technology, 2018, 47(5): 46-50 (in Chinese)
    [10] 张铱洪, 马传艺, 杨圣文, 等. 铝片-铜管太阳能集热板超声波焊接机理研究[J]. 焊接技术, 2007, 36(5): 14-18 doi: 10.3969/j.issn.1002-025X.2007.05.005

    ZHANG Y H, MA C Y, YANG S W, et al. Study of ultrasonic welding mechanism for aluminum sheet-copper tube solar collector[J]. Welding Technology, 2007, 36(5): 14-18 (in Chinese) doi: 10.3969/j.issn.1002-025X.2007.05.005
    [11] 谷晓燕, 刘东锋, 刘婧, 等. 焊接能量对Cu/Al超声波焊接接头组织与性能的影响[J]. 吉林大学学报(工学版), 2019, 49(5): 1600-1607

    GU X Y, LIU D F, LIU J, et al. Effect of welding energy on microstructure and mechanical properties of Cu/Al joints welded by ultrasonic welding[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(5): 1600-1607 (in Chinese)
    [12] BRAUNOVIC M, ALEKSANDROV N. Effect of electrical current on the morphology and kinetics of formation of intermetallic phases in bimetallic aluminum-copper joints [C]//Proceedings of 1993 IEEE Holm Conference on Electrical Contacts. Pittsburgh, PA: IEEE, 1993: 261-268
    [13] MACWAN A, CHEN D L. Ultrasonic spot welding of rare-earth containing ZEK100 magnesium alloy to 5754 aluminum alloy[J]. Materials Science and Engineering:A, 2016, 666: 139-148 doi: 10.1016/j.msea.2016.04.060
    [14] PATEL V K, BHOLE S D, CHEN D L. Improving weld strength of magnesium to aluminium dissimilar joints via tin interlayer during ultrasonic spot welding[J]. Science and Technology of Welding and Joining, 2012, 17(5): 342-347 doi: 10.1179/1362171812Y.0000000013
    [15] 谷晓燕, 刘婧, 刘东锋, 等. 焊接能量对Mg/Al超声波焊接接头微观组织与力学性能的影响[J]. 机械工程学报, 2019, 55(6): 23-31 doi: 10.3901/JME.2019.06.023

    GU X Y, LIU J, LIU D F, et al. Effect of welding energy on microstructure and mechanical properties of Mg/Al joints welded by ultrasonic spot welding[J]. Journal of Mechanical Engineering, 2019, 55(6): 23-31 (in Chinese) doi: 10.3901/JME.2019.06.023
    [16] 张义福, 张华, 朱政强, 等. 锆/镍超声波焊接界面IMCs生长行为及其性能分析[J]. 稀有金属, 2019, 43(3): 283-289

    ZHANG Y F, ZHANG H, ZHU Z Q, et al. Growth behavior and properties of Zr/Ni interface IMCs phases in ultrasonic welding process[J]. Chinese Journal of Rare Metals, 2019, 43(3): 283-289 (in Chinese)
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  102
  • HTML全文浏览量:  30
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-24
  • 录用日期:  2021-12-17
  • 刊出日期:  2022-04-05

目录

    /

    返回文章
    返回