留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

叶片铣削及喷丸加工残余应力测试与三维表征

梁巧云 蔺治强 张吉银 姚倡锋

梁巧云,蔺治强,张吉银, 等. 叶片铣削及喷丸加工残余应力测试与三维表征[J]. 机械科学与技术,2022,41(11):1794-1804 doi: 10.13433/j.cnki.1003-8728.20200520
引用本文: 梁巧云,蔺治强,张吉银, 等. 叶片铣削及喷丸加工残余应力测试与三维表征[J]. 机械科学与技术,2022,41(11):1794-1804 doi: 10.13433/j.cnki.1003-8728.20200520
LIANG Qiaoyun, LIN Zhiqiang, ZHANG Jiyin, YAO Changfeng. Measurement and Three-dimensional Characterization of Residual Stress After Milling and Shot Peening of Blade[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1794-1804. doi: 10.13433/j.cnki.1003-8728.20200520
Citation: LIANG Qiaoyun, LIN Zhiqiang, ZHANG Jiyin, YAO Changfeng. Measurement and Three-dimensional Characterization of Residual Stress After Milling and Shot Peening of Blade[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1794-1804. doi: 10.13433/j.cnki.1003-8728.20200520

叶片铣削及喷丸加工残余应力测试与三维表征

doi: 10.13433/j.cnki.1003-8728.20200520
基金项目: 国家科技重大专项(92160301,2017-VII-0001-0094)与国家自然科学基金项目(92160301,91860206,51875472,51905440)
详细信息
    作者简介:

    梁巧云(1974−),高级工程师,硕士,研究方向为航空发动机叶片加工技术,lqywjh@126.com

    通讯作者:

    姚倡锋,教授,博士生导师,chfyao@nwpu.edu.cn

  • 中图分类号: TG54

Measurement and Three-dimensional Characterization of Residual Stress After Milling and Shot Peening of Blade

  • 摘要: 为了研究具有典型薄壁结构特征的叶片铣削及喷丸加工后残余应力的分布情况,以叶片为研究对象,采用X射线衍射方法,结合叶片具体结构特征,进行针对钛合金叶片对象的三维残余应力测试;依据叶片表面及表层残余应力的测试结果,进行叶片表面残余应力及表层残余应力的分析,发现叶片叶背及叶盆表面的残余应力都是残余压应力,且分布没有一致的规律,但叶背及叶盆的残余应力沿深度方向的分布趋势大体是一致的;最后在叶片表面及表层残余应力测试结果的基础上,采用数值拟合的方法,获得了基于叶片三维坐标(x-y-h)分布的残余应力预测经验公式;根据特定测量点残余应力测试结果,验证了喷丸叶片残余应力三维表征经验公式的可行性。
  • 图  1  表层残余应力测试点示意图

    图  2  铣削叶片表面残余应力

    图  3  喷丸叶片表面残余应力

    图  4  铣削叶片表面残余应力统计分布

    图  5  喷丸叶片表面残余应力统计分布

    图  6  铣削叶片表层残余应力

    图  7  喷丸叶片表层残余应力

    图  8  铣削叶片残余应力三维表征

    图  9  喷丸叶片残余应力三维表征

    表  1  叶片表面残余应力测量点坐标

    铣削叶片
    测量点坐标/mm
    喷丸叶片
    测量点坐标/mm
    叶背X叶背Y叶盆X叶盆Y叶背X叶背Y叶盆X叶盆Y
    1−7516075240−5514070220
    2−35165302203517515185
    320175−3020575210−50160
    460220−6518030240−70225
    5−10215−50240−20205−10220
    6−502350250−6520520245
    7−6529050280−5526065280
    8−30300−40285−2027530300
    902807040550285−25290
    10552802537060400−70395
    11−30395−35370−3539030380
    12−55410−70385−7041570405
    13−45470−70445−7047565485
    14−548065475−4047050520
    1550480304906546510515
    1620560−2549040515−10490
    17−3557555590−15510−60470
    18−6060030575−55525−65525
    19−5600−10590−40600−15595
    2050595−555801560040600
    下载: 导出CSV

    表  2  叶片表层残余应力测量点坐标

    铣削叶片
    测量点坐标 /mm
    喷丸叶片
    测量点坐标 /mm
    叶背X叶背Y叶盆X叶盆Y叶背X叶背Y叶盆X叶盆Y
    1−6010070180−607570160
    201500150−51100135
    365180−6510570150−6095
    4−6536065350−7031060315
    5−53600350−53050305
    665360−6535060300−60295
    7−6054060550−6051055520
    8−55405550−105155520
    9﹟55540−5555055510−50515
    下载: 导出CSV

    表  3  叶片表面残余应力

    铣削叶片残余应力 /MPa喷丸叶片残余应力/MPa
    叶背叶盆叶背叶盆
    1−400.04−364.22−688.47−730.65
    2−415.79−347.36−722.53−695.08
    3−373.73−337.85−681.28−696.25
    4−325.27−296.97−730.58−681.51
    5−398.30−257.41−732.3−742.92
    6−389.38−230.74−668.58−735.47
    7−360.38−350.22−722.62−728.35
    8−357.77−291.65−744.77−744.29
    9−294.11−358.63−691.15−679.95
    10−260.39−299.82−751.29−731.22
    11−286.13−269.85−744.25−742.25
    12−295.93−289.96−696.93−754.09
    13−334.33−314.17−727.42−703.94
    14−278.46−292.8−700.57−680.92
    15−364.10−304.35−705.13−707.45
    16−380.04−282.07−720.67−675.17
    17−335.09−293.47−702.28−696.37
    18−351.03−331.73−696.19−672.03
    19−312.65−367.44−743.77−727.92
    20−364.49−295.68−733.69−695.50
    下载: 导出CSV

    表  4  铣削叶片表层残余应力

    深度/μm叶背残余应力 /MPa
    1#2#3#4#5#6#7#8#9#
    0−339.14−374.3−332.38−308.02−258.21−285.08−331.47−323.54−323.19
    10−320.34−364.26−305.21−295.0−243.96−243.96−229.56−240.09−240.09
    20−229.01−321.48−309.8−238.54−219.02−219.02−153.48−225.34−134.53
    30−123.41−210.54−256.29−118.31−133.9−95.1520.70−116.768.33
    40−10.06−77.89−69.59−26.61−85.30−35.408.14−55.4527.66
    5015.07−27.68−23.9327.33−11.2521.75−6.013.3226.15
    60−11.07−10.14−25.537.96−13.59−4.490.08−13.251.83
    深度/μm叶盆残余应力/MPa
    1#2#3#4#5#6#7#8#9#
    0−361.02−310.07−293.18−324.68−303.55−255.45−285.89−300.37−311.66
    10−344.15−341.68−329.68−277.56−300.43−225.83−249.6−303.17−241.73
    20−229.92−289.86−290.30−201.62−263.25−227.58−174.6−206.17−147.29
    30−130.77−175.77−210.75−102.09−217.15−140.55−12.02−97.18−16.96
    40−58.32−93.00−121.78−14.59−122.59−95.4421.56−24.46−7.56
    50−6.19−27.55−59.74−5.07−38.04−42.8918.43−0.594.15
    604.00−18.57−4.2617.20−34.65−23.46−13.81−6.82−9.47
    下载: 导出CSV

    表  5  喷丸叶片表层残余应力

    深度/μm叶背残余应力 /MPa
    1#2#3#4#5#6#7#8#9#
    0−704.03−702.16−704.76−690.62−749.07−774.02−754.34−731.68−730.04
    30−737.72−661.23−722.57−777.89−755.36−731.64−701.41−692.26−744.98
    60−697.97−621.38−684.88−672.20−728.00−694.13−639.75−687.91−702.98
    90−599.67−387.39−404.21−401.96−557.23−494.87−391.33−540.95−221.73
    120−378.37−266.00−200.89−321.20−305.32−255.94−235.12−323.73−349.31
    150−78.64−68.13−76.73−80.91−175.22−34.65−24.93−133.70−81.60
    180−2.2514.11−17.50−30.3317.014.7221.12−12.60−10.81
    深度/μm叶盆残余应力/MPa
    1#2#3#4#5#6#7#8#9#
    0−679.27−673.94−699.35−668.66−675.04−712.13−658.23−680.90−731.96
    30−661.65−613.57−620.55−645.09−716.41−647.74−625.50−660.37−630.66
    60−526.25−472.35−514.77−601.64−661.19−646.19−537.34−559.01−573.39
    90−357.41−433.62−426.49−424.10−448.66−436.77−360.20−329.55−353.88
    120−209.35−208.29−257.66−240.58−295.05−276.68−143.41−176.69−195.44
    150−64.37−86.61−47.98−26.07−187.84−43.15−74.47−76.06−56.95
    180−4.10−16.02−39.82−14.1517.0023.11−4.10−22.13−3.31
    下载: 导出CSV

    表  6  铣削叶片随机测量点残余应力计算值和测量值

    测量点123456
    坐标(x,y,h (60,220,0) (−55,410,0) (−5,590,0) (0,145,10) (−10,360,30) (55,560,40)
    残余应力计算值/ MPa −302.18 −302.69 306.32 −304.73 −124.68 21.98
    残余应力测量值/ MPa −305.27 −275.93 −332.65 −320.34 −133.90 14.62
    下载: 导出CSV

    表  7  喷丸叶片随机测量点残余应力计算值和测量值

    测量点123456
    坐标(x,y,h (75,210,0) (−70,415,0) (15,600,0) (0,150,30) (−65,360,90) (55,540,120)
    残余应力计算值/MPa −701.16 −696.34 −699.93 −722.38 −482.27 −291.38
    残余应力测量值/MPa −661.28 −692.81 −703.69 −747.08 −471.19 −280.67
    下载: 导出CSV
  • [1] 陈禹锡, 高玉魁. Ti2AlNb金属间化合物喷丸强化残余应力模拟分析与疲劳寿命预测[J]. 表面技术, 2019, 48(6): 167-172+188

    CHEN Y X, GAO Y K. Simulation of the residual stress and fatigue prediction of Ti2AlNb intermetallic compound under shot peening[J]. Surface Technology, 2019, 48(6): 167-172+188 (in Chinese)
    [2] 胡效东, 马崇斌, 赵永锋, 等. 超声冲击处理对316L不锈钢焊接接头组织及残余应力的影响[J]. 热加工工艺, 2018, 47(11): 190-195

    HU X D, MA C B, ZHAO Y F, et al. Effect of ultrasanic impact treatment on microstructure and residual stress of 316L stainless steel welded joint[J]. Hot Working Technology, 2018, 47(11): 190-195 (in Chinese)
    [3] 甘世明, 韩永全, 陈芙蓉, 等. 基于弹性模量变化的7A52铝合金VPPA-MIG复合焊接残余应力测试[J]. 焊接学报, 2019, 40(5): 13-17+23 doi: 10.12073/j.hjxb.2019400120

    GAN S M, HAN Y Q, CHEN F R, et al. 7A52 aluminum alloy VPPA-MIG hybrid welding residual stress testing based on elastic modulus variation[J]. Transactions of the China Welding Institution, 2019, 40(5): 13-17+23 (in Chinese) doi: 10.12073/j.hjxb.2019400120
    [4] 熊茂县, 杨莎莎, 谢俊峰, 等. 盲孔法与环切法测试油管残余应力相关性探讨[J]. 物理测试, 2019, 37(3): 33-35

    XIONG M X, YANG S S, XIE J F, et al. Discussion about correlation between blind-hole technology and the ring method in testing residual-stress of oil casing[J]. Physics Examination and Testing, 2019, 37(3): 33-35 (in Chinese)
    [5] 张宇, 李亮, 戎斌, 等. TC4钛合金条形零件铣削加工表面残余应力测试与分析[J]. 机械制造与自动化, 2016, 45(2): 25-27+35 doi: 10.3969/j.issn.1671-5276.2016.02.007

    ZHANG Y, LI L, RONG B, et al. Testing and analysis of milling surface residual stress in TC4 titanium alloy bar parts[J]. Machine Building & Automation, 2016, 45(2): 25-27+35 (in Chinese) doi: 10.3969/j.issn.1671-5276.2016.02.007
    [6] 姚罡, 张杰, 陆业航, 等. X射线法测试钛合金结构件残余应力的适用性研究[J]. 航空制造技术, 2017(14): 93-96

    YAO G, ZHANG J, LU Y H, et al. Applicability research on measuring residual stress of titanium alloy by X-ray test[J]. Aeronautical Manufacturing Technology, 2017(14): 93-96 (in Chinese)
    [7] 曹宇鹏, 葛良辰, 冯爱新, 等. 冲击波传播方式对激光冲击7050铝合金残余应力分布的影响[J]. 表面技术, 2019, 48(6): 195-202+220

    CAO Y P, GE L C, FENG A X, et al. Effect of shock wave propagation mode on residual stress distribution of laser shock 7050 aluminum alloy[J]. Surface Technology, 2019, 48(6): 195-202+220 (in Chinese)
    [8] 何山, 邓贤远. 基于X射线衍射法的圆筒对接焊缝残余应力测试与分析[J]. 起重运输机械, 2019(8): 83-86 doi: 10.3969/j.issn.1001-0785.2019.08.028

    HE S, DENG X Y. Measurement and analysis of residual stress in butt weld of cylinder based on X-ray diffraction[J]. Hoisting and Conveying Machinery, 2019(8): 83-86 (in Chinese) doi: 10.3969/j.issn.1001-0785.2019.08.028
    [9] 刘昭, 孙光爱, 王虹, 等. GH4169合金淬火残余应力的中子衍射及有限元分析[J]. 钢铁研究学报, 2018, 30(9): 729-734

    LIU Z, SUN G A, WANG H, et al. Neutron diffraction and finite element analysis of quenching residual stress of GH4169 super alloy[J]. Journal of Iron and Steel Research, 2018, 30(9): 729-734 (in Chinese)
    [10] 刘晓龙, 李眉娟, 刘蕴韬, 等. 中国先进研究堆中子残余应力谱仪实验软件设计[J]. 原子能科学技术, 2016, 50(5): 915-920

    LIU X L, LI M J, LIU Y T, et al. Experimental software design of neutron residual stress diffractometer at China advanced research reactor[J]. Atomic Energy Science and Technology, 2016, 50(5): 915-920 (in Chinese)
    [11] 朱其猛. 临界折射纵波(LCR)应力测试修正方法与机理研究[D]. 成都: 西南交通大学, 2017

    ZHU Q M. Research on correction methods and mechanisms of longitudinal critical wave refraction (LCR) stress measuring technology[D]. Chengdu: Southwest Jiaotong University, 2017 (in Chinese)
    [12] 孟祥瑞. 小波降噪算法在临界折射纵波残余应力检测中的应用[J]. 机械, 2019, 46(6): 38-41

    MENG X R. Application of ultrasonic algorithm based on the wavelet de-nosing on the longitudinal critical refraction (LCR) for residual stress detection[J]. Machinery, 2019, 46(6): 38-41 (in Chinese)
    [13] 杨旭宏, 郭奇, 郭丽杰, 等. 磁记忆技术在焊缝残余应力检测中的试验研究[J]. 燕山大学学报, 2016, 40(3): 246-251 doi: 10.3969/j.issn.1007-791X.2016.03.010

    YANG X H, GUO Q, GUO L J, et al. Experimental research on metal magnetic memory technology in detection of residual stress in welding seam[J]. Journal of Yanshan University, 2016, 40(3): 246-251 (in Chinese) doi: 10.3969/j.issn.1007-791X.2016.03.010
    [14] 王嘉伟, 董军, 陈岚树, 等. 磁应变法残余应力检测试验研究[J]. 建筑钢结构进展, 2016, 18(3): 18-23

    WANG J W, DONG J, CHEN L S, et al. Experimental study on detecting residual stress by magnetic strain measurement method[J]. Progress in Steel Building Structures, 2016, 18(3): 18-23 (in Chinese)
    [15] RATCHEV S M, AFAZOV S M, BECKER A A, et al. Mathematical modelling and integration of micro-scale residual stresses into axisymmetric FE models of Ti6Al4V alloy in turning[J]. CIRP Journal of Manufacturing Science and Technology, 2011, 4(1): 80-89 doi: 10.1016/j.cirpj.2011.03.002
    [16] SALONITIS K, KOLIOS A. Experimental and numerical study of grind-hardening-induced residual stresses on AISI 1045 steel[J]. The International Journal of Advanced Manufacturing Technology, 2015, 79(9-12): 1443-1452 doi: 10.1007/s00170-015-6912-x
    [17] YANG D, LIU Z Q, REN X P, et al. Hybrid modeling with finite element and statistical methods for residual stress prediction in peripheral milling of titanium alloy Ti-6Al-4V[J]. International Journal of Mechanical Sciences, 2016, 108-109: 29-38 doi: 10.1016/j.ijmecsci.2016.01.027
    [18] AL-HASSANI S T S. Mechanical aspects of residual stress development in shot peening[C]// Proceedings of International Scientific Committee for Shot Peening, The First International Conference on Shot Peening. Pairs: [s. n. ], 1981: 583-602
    [19] AL-HASSANI S T S. An engineering approach to shot peening mechanics[C]// Proceedings of the 2nd international conference on shot peening. Chicago, 1984: 275-282
    [20] AL-OBAID Y F. Shot peening mechanics: experimental and theoretical analysis[J]. Mechanics of Materials, 1995, 19(2-3): 251-260 doi: 10.1016/0167-6636(94)00036-G
    [21] FLAVENOT J, NIKU-LARI A. La mesure des contraintes residuelles: methode de la fleche, methode de la source des contraintes[J]. Les Memories, technique Due, 1977
    [22] TAN L, YAO C F, ZHANG D H, et al. Empirical modeling of compressive residual stress profile in shot peening TC17 alloy using characteristic parameters and sinusoidal decay function[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2018, 232(5): 855-866 doi: 10.1177/0954405416657585
    [23] SHERAFATNIA K, FARRAHI G H, MAHMOUDI A H. Effect of initial surface treatment on shot peening residual stress field: analytical approach with experimental verification[J]. International Journal of Mechanical Sciences, 2018, 137: 171-181 doi: 10.1016/j.ijmecsci.2018.01.022
    [24] ATIG A, BEN SGHAIER R, SEDDIK R, et al. Probabilistic methodology for predicting the dispersionof residual stresses and Almen intensity considering shot peening process uncertainties[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(5-8): 2125-2136 doi: 10.1007/s00170-017-1033-3
    [25] 曹子文, 张杰, 车志刚, 等. 激光冲击与喷丸复合强化TC17钛合金表层残余应力研究[J]. 表面技术, 2018, 47(11): 80-84

    CAO Z J, ZHANG J, CHE Z G, et al. Residual stresses of compound strengthening case on TC17 titanium alloy by laser peening and shot peening[J]. Surface Technology, 2018, 47(11): 80-84 (in Chinese)
  • 加载中
图(9) / 表(7)
计量
  • 文章访问数:  139
  • HTML全文浏览量:  53
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-20
  • 刊出日期:  2023-02-04

目录

    /

    返回文章
    返回