留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自相似仿生层次多胞薄壁管的耐撞性研究及优化

徐少强 李伟伟 李琳

徐少强,李伟伟,李琳. 自相似仿生层次多胞薄壁管的耐撞性研究及优化[J]. 机械科学与技术,2022,41(12):1852-1859 doi: 10.13433/j.cnki.1003-8728.20200517
引用本文: 徐少强,李伟伟,李琳. 自相似仿生层次多胞薄壁管的耐撞性研究及优化[J]. 机械科学与技术,2022,41(12):1852-1859 doi: 10.13433/j.cnki.1003-8728.20200517
XU Shaoqiang, LI Weiwei, LI Lin. Research and Optimization on Crashworthiness of Self-similar Bionic Multi-cell Thin-walled Tube[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1852-1859. doi: 10.13433/j.cnki.1003-8728.20200517
Citation: XU Shaoqiang, LI Weiwei, LI Lin. Research and Optimization on Crashworthiness of Self-similar Bionic Multi-cell Thin-walled Tube[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1852-1859. doi: 10.13433/j.cnki.1003-8728.20200517

自相似仿生层次多胞薄壁管的耐撞性研究及优化

doi: 10.13433/j.cnki.1003-8728.20200517
基金项目: 国家自然科学基金青年基金项目(11902183)
详细信息
    作者简介:

    徐少强(1996−),硕士研究生,研究方向为车辆系统动力学,xsq1220@163.com

    通讯作者:

    李伟伟,副教授,硕士生导师,liww@sdut.edu.cn

  • 中图分类号: O313.4

Research and Optimization on Crashworthiness of Self-similar Bionic Multi-cell Thin-walled Tube

  • 摘要: 仿生结构以其优异的力学性能被广泛的应用于各种机械结构中。为了提高薄壁结构的耐撞性,将结构仿生学概念引入其结构设计中,提出了一种新型的多胞薄壁吸能结构。采用了理论和数值模拟技术对0~2阶次层次截面的薄壁结构进行对比分析,结果表明:随着仿生层次结构的不断增加,仿生薄壁结构的吸能特性与变形模式进一步提升。同时,结合响应面法和遗传算法对2阶层次截面的薄壁结构进行了优化,并得到了相应的Pareto前沿图,为薄壁结构的耐撞性设计提供了新思路。
  • 图  1  仿生结构的演变

    图  2  计算模型

    图  3  简化的超折叠单元

    图  4  仿生结构截面图

    图  5  各薄壁管能量比率曲线

    图  6  3种薄壁结构的变形状态图

    图  7  各管的轴向冲击力-位移曲线

    图  8  误差分析图

    图  9  Isight流程图

    图  10  Pareto 最优解集

    表  1  有限元模型参数

    模型参数数值
    材料密度 $\rho /({\text{kg} }\cdot { {\text{mm} }^{ - 1} })$ 2.7×10−6
    泊松比 $\mu $ 0.3
    弹性模量 E/MPa 68210
    屈服应力/MPa 80
    极限应力/MPa 173
    网格尺寸/mm 2
    下载: 导出CSV

    表  2  各管的沙漏能

    截面形状沙漏能/J内能/J沙漏能与内能之比/%
    T02.193235.60.07
    T113.1213370.00.10
    T215.7922399.00.07
    下载: 导出CSV

    表  3  各管冲击力理论预测值与数值模拟值比较

    截面形状理论值/N仿真值/N相对误差/%
    T01.895×1042.021×104−6.23
    T19.419×1049.027×1044.35
    T21.451×1051.503×105−3.47
    下载: 导出CSV

    表  4  薄壁管的能量吸收

    截面形状内能/J质量/kg比吸能/(kJ·kg−1
    T03235.60.34569.362
    T113370.60.64820.63
    T222399.00.820827.29
    下载: 导出CSV

    表  5  样本数据统计

    编号D1/mmD2/mmt/mm${F_{PCF}}$/NSEA
    /(kJ·kg−1
    122.0019.371.684133620.025.74
    222.6818.110.86350400.017.42
    323.379.891.747129340.029.11
    424.0518.741.17980945.020.44
    524.7412.421.621123280.027.72
    625.428.631.24278086.021.68
    726.1114.951.30593666.023.09
    826.7916.840.80058959.015.34
    927.4715.581.432110330.023.91
    1028.1614.321.937171240.030.46
    1128.8417.471.874170050.028.59
    1229.5313.050.98963369.018.67
    1330.218.001.36895711.021.43
    1430.8913.681.116133620.019.72
    1531.5811.791.55850400.025.26
    1632.2610.532.000129340.027.84
    1732.9511.161.05380945.018.26
    1833.6316.210.926123280.016.76
    1934.3220.001.49578086.022.27
    2035.009.261.81193666.024.57
    下载: 导出CSV

    表  6  响应面优化值与有限元仿真结果对比分析

    参数取值 /mm目标参数NSGA-Ⅱ算法优化
    优化值仿真值误差/%
    D122.541SEA/(kJ·kg−129.07528.930.50
    D211.207FPCF/N123360124040−0.55
    t1.6901
    下载: 导出CSV
  • [1] 国家统计局. 私人汽车拥有量[EB/OL]. [2020-07-06]. http://data.stats.gov.cn/easyquery.htm?cn=C01

    National Bureau of Statistics. Private car ownership[EB/OL]. [2020-07-06]. http://data.stats.gov.cn/easyquery.htm?cn=C01 (in Chinese)
    [2] 梁建术, 师光耀, 骆孟波. 汽车吸能盒的结构优化设计[J]. 机械设计制造, 2016(9): 16-18

    LIANG J S, SHI G Y, LUO M B. Structure optimization design of energy-absorbing box for automobile[J]. Machinery Design and Manufacture, 2016(9): 16-18 (in Chinese)
    [3] 张立玲, 高峰. 金属薄壁吸能结构耐撞性研究进展[J]. 机械工人, 2006(1): 76-78

    ZHANG L L, GAO F. Research progress of antishock property of energy-absorbing structure of metal thin-wall[J]. Metal Forming, 2006(1): 76-78 (in Chinese)
    [4] ALEXANDER J M. An approximate analysis of the collapse of thin cylindrical shells under axial loading[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1960, 13(1): 10-15 doi: 10.1093/qjmam/13.1.10
    [5] WIERZBICKI T, ABRAMOWICZ W. On the crushing mechanics of thin-walled structures[J]. Journal of Applied Mechanics, 1983, 50(4a): 727-734 doi: 10.1115/1.3167137
    [6] CHEN W G, WIERZBICKI T. Relative merits of single-cell, multi-cell and foam-filled thin-walled structures in energy absorption[J]. Thin-Walled Structures, 2001, 39(4): 287-306 doi: 10.1016/S0263-8231(01)00006-4
    [7] NAJAFI A, RAIS-ROHANI M. Mechanics of axial plastic collapse in multi-cell, multi-corner crush tubes[J]. Thin-Walled Structures, 2011, 49(1): 1-12 doi: 10.1016/j.tws.2010.07.002
    [8] ZHENG G, PANG T, SUN G Y, et al. Theoretical, numerical, and experimental study on laterally variable thickness (LVT) multi-cell tubes for crashworthiness[J]. International Journal of Mechanical Sciences, 2016, 118: 283-297 doi: 10.1016/j.ijmecsci.2016.09.015
    [9] ZHOU B L. Bio-Inspired study of structural materials[J]. Materials Science and Engineering:C, 2000, 11(1): 13-18 doi: 10.1016/S0928-4931(00)00136-3
    [10] 许述财, 邹猛, 魏灿刚, 等. 仿竹结构薄壁管的轴向耐撞性分析及优化[J]. 清华大学学报(自然科学版), 2014, 54(3): 299-304

    XU S C, ZOU M, WEI C G, et al. Axial crashworthiness analysis and optimization of a bionic thin-walled tube based on bamboo structure[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(3): 299-304 (in Chinese)
    [11] 曾意. 层级自相似薄壁仿生结构的耐撞性研究[D]. 泉州: 华侨大学, 2018

    ZENG Y. Crashworthiness investigation of thin-walled bionic hierarchical self-similar structures[D]. Quanzhou: Huaqiao University, 2018 (in Chinese)
    [12] SONG X G, SUN G Y, LI G Y, et al. Crashworthiness optimization of foam-filled tapered thin-walled structure using multiple surrogate models[J]. Structural and Multidisciplinary Optimization, 2013, 47(2): 221-231 doi: 10.1007/s00158-012-0820-6
    [13] HALLQUIST J. LS-DYNA user′s manual. Version: LS-DYNA 970ed[M]. Livermore Software Technology Corporation, 2003
    [14] SONG J F, XU S C, WANG H X, et al. Bionic design and multi-objective optimization for variable wall thickness tube inspired bamboo structures[J]. Thin-Walled Structures, 2018, 125: 76-88 doi: 10.1016/j.tws.2018.01.010
    [15] ABRAMOWICZ W, JONES N. Dynamic progressive buckling of circular and square tubes[J]. International Journal of Impact Engineering, 1986, 4(4): 243-270 doi: 10.1016/0734-743X(86)90017-5
    [16] ZHANG X, ZHANG H. Numerical and theoretical studies on energy absorption of three-panel angle elements[J]. International Journal of Impact Engineering, 2012, 46: 23-40 doi: 10.1016/j.ijimpeng.2012.02.002
    [17] QIU N, GAO Y K, FANG J G, et al. Theoretical prediction and optimization of multi-cell hexagonal tubes under axial crashing[J]. Thin-Walled Structures, 2016, 102: 111-121 doi: 10.1016/j.tws.2016.01.023
    [18] 唐智亮, 刘书田, 张宗华. 薄壁非凸截面多胞管轴向冲击耐撞性研究[J]. 固体力学学报, 2011, 32(S1): 206-213

    TANG Z L, LIU S T, ZHANG Z H. Crashworthiness of non-convex multi-cell thin-walled columns subjected to axial crash[J]. Chinese Journal of Solid Mechanics, 2011, 32(S1): 206-213 (in Chinese)
    [19] 黄晗, 许述财, 杜雯菁, 等. 基于虾螯结构的仿生薄壁管吸能特性分析及优化[J]. 北京理工大学学报, 2020, 40(3): 267-274

    HUANG H, XU S C, DU W J, et al. Energy absorption analysis and optimization of a bionic thin-walled tube based on shrimp chela[J]. Transactions of Beijing Institute of Technology, 2020, 40(3): 267-274 (in Chinese)
    [20] ZHANG Y, XU X, SUN G Y, et al. Nondeterministic optimization of tapered sandwich column for crashworthiness[J]. Thin-Walled Structures, 2018, 122: 193-207 doi: 10.1016/j.tws.2017.09.028
    [21] HOU S J, LI Q, LONG S Y, et al. Multiobjective optimization of multi-cell sections for the crashworthiness design[J]. International Journal of Impact Engineering, 2008, 35(11): 1355-1367 doi: 10.1016/j.ijimpeng.2007.09.003
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  587
  • HTML全文浏览量:  264
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-31
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回