留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光固化光敏树脂蜂窝结构试样动态力学行为及本构模型

雷经发 卢陈 刘涛 孙虹 魏展

雷经发,卢陈,刘涛, 等. 光固化光敏树脂蜂窝结构试样动态力学行为及本构模型[J]. 机械科学与技术,2021,40(9):1464-1470 doi: 10.13433/j.cnki.1003-8728.20200512
引用本文: 雷经发,卢陈,刘涛, 等. 光固化光敏树脂蜂窝结构试样动态力学行为及本构模型[J]. 机械科学与技术,2021,40(9):1464-1470 doi: 10.13433/j.cnki.1003-8728.20200512
LEI Jingfa, LU Chen, LIU Tao, SUN Hong, WEI Zhan. Dynamic Mechanical Behavior and Constitutive Model of Photocurable Photosensitive Resin Honeycomb Structure Specimen[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1464-1470. doi: 10.13433/j.cnki.1003-8728.20200512
Citation: LEI Jingfa, LU Chen, LIU Tao, SUN Hong, WEI Zhan. Dynamic Mechanical Behavior and Constitutive Model of Photocurable Photosensitive Resin Honeycomb Structure Specimen[J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(9): 1464-1470. doi: 10.13433/j.cnki.1003-8728.20200512

光固化光敏树脂蜂窝结构试样动态力学行为及本构模型

doi: 10.13433/j.cnki.1003-8728.20200512
基金项目: 合肥市自然科学基金项目(2021019)、安徽高校优秀拔尖人才培育项目(gxbjZD2020078)及安徽高校优秀青年人才支持计划项目(gxyqZD2019057)
详细信息
    作者简介:

    雷经发(1978–),教授,博士,研究方向为生物材料测试技术、数字化设计与制造,rain78828@163.com

    通讯作者:

    孙虹,副教授,硕士,sunhong2014@163.com

  • 中图分类号: TQ321

Dynamic Mechanical Behavior and Constitutive Model of Photocurable Photosensitive Resin Honeycomb Structure Specimen

  • 摘要: 为明确光固化成型技术制备的蜂窝状结构光敏树脂材料的力学性能,使用万能材料试验机和分离式霍普金森压杆实验装置对原始实心试样和不同胞元直径的圆形蜂窝结构试样进行不同应变率的力学性能测试。结果表明:光敏树脂的弹性模量和屈服极限随应变率的增加而增加。低应变率下,光敏树脂达到屈服极限后出现了应变软化和应变硬化现象,体现出光敏树脂的粘弹性。高应变率下,光敏树脂呈现出显著的应变率效应以及应变率敏感性。蜂窝结构试样的弹性模量和屈服极限随着胞元直径的增加而降低。最后建立了高应变率下光敏树脂的ZWT非线性粘弹性本构模型,拟合的数据与实际数据能够较好地吻合。
  • 图  1  圆形蜂窝状结构试样结构图

    图  2  蜂窝结构平面局部放大图

    图  3  圆形蜂窝状结构试样实物图

    图  4  不同结构的光敏树脂准静态压缩应力-应变曲线

    图  5  分离式霍普金森压杆试验装置实物图

    图  6  分离式霍普金森压杆试验装置示意图

    图  7  实心光敏树脂动态压缩应力-应变曲线

    图  8  3种应变率下不同内部结构光敏树脂动态应力-应变曲线

    图  9  ZWT模型简图

    图  10  实验、拟合曲线对比图

    表  1  蜂窝状结构的基本设计参数

    序号
    t/mmd/mmD/mmR1/mmρ*/ρs
    1 0.25 0.25 2.5 1.5 0.28
    2 0.25 0.25 3.5 2 0.21
    3 0.25 0.25 4.5 2.5 0.17
    下载: 导出CSV

    表  2  ZWT模型拟合参数值

    拟合类型E0/MPaE1/MPaα/MPaβ/MPaE2/MPaθ/μsR2/%
    Ø2.5 mm/1200 s−1 3129 −2334 17000 −173800 −67.58 9382 0.9969
    Ø2.5 mm/1500 s−1 3409 −1 911 −5619 −40310 434.2 −132.7 0.9947
    Ø2.5 mm/1800 s−1 807.8 143.6 −9804 8261 823.8 −45.56 0.9900
    Ø3.5 mm/1200 s−1 −64760 55210 21960 −172900 9722 −6502 0.9937
    Ø3.5 mm/1500 s−1 −1879 1208 −5416 −20210 2228 −9.473 0.9904
    Ø3.5 mm/1800 s−1 −11200 10200 −4596 −3375 2164 −14.78 0.9871
    Ø4.5 mm/1200 s−1 31460 −21600 15010 −108500 −9776 −171.2 0.9968
    Ø4.5 mm/1500 s−1 −20580 10760 4783 −63790 10640 7.106 0.9928
    Ø4.5 mm/1800 s−1 −5043 3701 −342 −17770 2113 158 0.9920
    下载: 导出CSV
  • [1] BALHADDAD A A, MARGHALANI A A, RADERMAN M A, et al. Hands-on training based on quantifying radiant exposure improves how dental students cure composites: Skill retention at 2-year follow-up[J]. European Journal of Dental Education, 2020: 1-10 doi: 10.1111/eje.12635
    [2] 鲁浩, 李楠, 王海波, 等. 碳纳米管复合材料的3D打印技术研究进展[J]. 材料工程, 2019, 47(11): 19-31 doi: 10.11868/j.issn.1001-4381.2018.001239

    LU H, LI N, WANG H B, et al. Research progress in 3D printing technology for carbon nanotubes composites[J]. Journal of Materials Engineering, 2019, 47(11): 19-31 (in Chinese) doi: 10.11868/j.issn.1001-4381.2018.001239
    [3] DENG Y H, LI J, HE Z H, et al. Urethane acrylate-based photosensitive resin for three-dimensional printing of stereolithographic elastomer[J]. Journal of Applied Polymer Science, 2020, 137(42): 49294 doi: 10.1002/app.49294
    [4] XIE J Q, HE Y S, MA W Q, et al. Study on the liquid crystal display mask photo-curing of photosensitive resin reinforced with graphene oxide[J]. Journal of Applied Polymer Science, 2020, 137(47): 49538 doi: 10.1002/app.49538
    [5] 李晶晶, 马世博, 梁帅, 等. 工艺参数对SLA成型制件力学性能的影响[J]. 工程塑料应用, 2019, 47(10): 75-79 doi: 10.3969/j.issn.1001-3539.2019.10.014

    LI J J, MA S B, LIANG S, et al. Effect of process parameters on mechanical properties of SLA molding parts[J]. Engineering Plastics Application, 2019, 47(10): 75-79 (in Chinese) doi: 10.3969/j.issn.1001-3539.2019.10.014
    [6] SALMORIA G V, AHRENS C H, FREDEL M, et al. Stereolithography somos 7110 resin: mechanical behavior and fractography of parts post-cured by different methods[J]. Polymer Testing, 2005, 24(2): 157-162 doi: 10.1016/j.polymertesting.2004.09.008
    [7] 董彦鹏, 吕振华. 基于蜂窝材料结构相似有限元模型的夹层结构抗爆炸冲击特性优化设计分析[J]. 工程力学, 2013, 30(7): 248-254 doi: 10.6052/j.issn.1000-4750.2012.03.0148

    DONG Y P, LYU Z H. Analysis and optimization of blast-resistant sandwich structure utilising structural similar Fe model of honeycome material[J]. Engineering Mechanics, 2013, 30(7): 248-254 (in Chinese) doi: 10.6052/j.issn.1000-4750.2012.03.0148
    [8] 苏继龙, 吴金东, 刘远力. 蜂窝结构力学超材料弹性及抗冲击性能的研究进展[J]. 材料工程, 2019, 47(8): 49-58 doi: 10.11868/j.issn.1001-4381.2018.001476

    SU J L, WU J D, LIU Y L. Progress in elastic property and impact resistance of honeycomb structure mechanical metamaterial[J]. Journal of Materials Engineering, 2019, 47(8): 49-58 (in Chinese) doi: 10.11868/j.issn.1001-4381.2018.001476
    [9] WEI Y L, YANG Q S, LIU X, et al. A novel 3D anti-tetrachiral structure with negative Poisson' s ratio[J]. Smart Materials and Structures, 2020, 29(8): 085003 doi: 10.1088/1361-665X/ab8c54
    [10] CAO L X, FAN F F. Deformation and instability of three-dimensional graphene honeycombs under in-plane compression: Atomistic simulations[J]. Extreme Mechanics Letters, 2020, 39: 100861 doi: 10.1016/j.eml.2020.100861
    [11] TAO Y, LI W G, WEI K, et al. Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression[J]. Composites Part B: Engineering, 2019, 176: 107219 doi: 10.1016/j.compositesb.2019.107219
    [12] 冯震宙, 王新军, 王富生, 等. 朱-王-唐非线性粘弹性本构模型在有限元分析中的实现及其应用[J]. 材料科学与工程学报, 2007, 25(2): 269-272 doi: 10.3969/j.issn.1673-2812.2007.02.027

    FENG Z Z, WANG X J, WANG F S, et al. Implementation and its application in finite element analysis of constitutive model for ZWT nonlinear viscoelastic material[J]. Journal of Materials Science and Engineering, 2007, 25(2): 269-272 (in Chinese) doi: 10.3969/j.issn.1673-2812.2007.02.027
    [13] 陈静, 杨建军, 吴庆云, 等. 巯基硅氧烷改性星形聚氨酯-丙烯酸酯乳液的制备与性能[J]. 高分子材料科学与工程, 2019, 35(1): 13-18

    CHEN J, YANG J J, WU Q Y, et al. Preparation and properties of mercapto siloxane modified star polyurethane acrylate emulsion[J]. Polymer Materials Science & Engineering, 2019, 35(1): 13-18 (in Chinese)
    [14] 李三保. 循环加成制备多官能度甲基丙烯酸酯单体及其性能研究[D]. 北京: 北京化工大学, 2019.

    LI S B. The Preparation of mutil-functional group methacrylate monomers via cyclic addition reaction and the study of its properties[D]. Beijing: Beijing University of Chemical Technology, 2019 (in Chinese)
    [15] 刘翔. 基于3D打印的负泊松比结构零件机械性能研究[D]. 西安: 西安理工大学, 2020.

    LIU X. Research on mechanical properties of negative Poisson's ratio structural parts based on 3D printing[D]. Xi' an: Xi' an University of Technology, 2020 (in Chinese)
    [16] BAE J W, LEE J, ZARGARAN A, et al. Enhanced cryogenic tensile properties with multi-stage strain hardening through partial recrystallization in a ferrous medium-entropy alloy[J]. Scripta Materialia, 2021, 194: 113653 doi: 10.1016/j.scriptamat.2020.113653
    [17] JIANG Z L, HU C B, LIU M, et al. Characteristics of morphology and tensile strength of asphalt mixtures under impact loading using split Hopkinson pressure bar[J]. Construction and Building Materials, 2020, 260: 120443 doi: 10.1016/j.conbuildmat.2020.120443
    [18] 李少华. 霍普金森压杆试验中的两种波形整形技术研究[D]. 沈阳: 东北大学, 2014.

    LI S H. Two pulse shaping techniques for SHPB test[D]. Shenyang: Northeastern University, 2014 (in Chinese)
    [19] FANG X F. A one-dimensional stress wave model for analytical design and optimization of oscillation-free force measurement in high-speed tensile test specimens[J]. International Journal of Impact Engineering, 2021, 149: 103770 doi: 10.1016/j.ijimpeng.2020.103770
    [20] 王晓燕, 卢芳云, 林玉亮. SHPB实验中端面摩擦效应研究[J]. 爆炸与冲击, 2006, 26(2): 134-139 doi: 10.3321/j.issn:1001-1455.2006.02.007

    WANG X Y, LU F Y, LIN Y L. Study on interfacial friction effect in the SHPB tests[J]. Explosion and Shock Waves, 2006, 26(2): 134-139 (in Chinese) doi: 10.3321/j.issn:1001-1455.2006.02.007
    [21] 卢玉斌. 塑料SHPB实验中的端面摩擦效应[J]. 爆炸与冲击, 2012, 32(1): 15-22 doi: 10.3969/j.issn.1001-1455.2012.01.003

    LU Y B. Interfacial friction effect in SHPB experiments of plastics[J]. Explosion and Shock Waves, 2012, 32(1): 15-22 (in Chinese) doi: 10.3969/j.issn.1001-1455.2012.01.003
    [22] LIN T C, CHEN T J, HUANG J S. In-plane elastic constants and strengths of circular cell honeycombs[J]. Composites Science and Technology, 2012, 72(12): 1380-1386 doi: 10.1016/j.compscitech.2012.05.009
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  266
  • HTML全文浏览量:  44
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-21
  • 刊出日期:  2021-10-18

目录

    /

    返回文章
    返回