留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空钛合金高效插铣加工实验与多目标优化研究

李益兵 王辉雄 庄可佳

李益兵,王辉雄,庄可佳. 航空钛合金高效插铣加工实验与多目标优化研究[J]. 机械科学与技术,2022,41(12):1921-1927 doi: 10.13433/j.cnki.1003-8728.20200511
引用本文: 李益兵,王辉雄,庄可佳. 航空钛合金高效插铣加工实验与多目标优化研究[J]. 机械科学与技术,2022,41(12):1921-1927 doi: 10.13433/j.cnki.1003-8728.20200511
LI Yibing, WANG Huixiong, ZHUANG Kejia. Study on Multi-objective Optimization and High Efficiency Plunge Milling Experiment of Titanium Alloy for Aviation[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1921-1927. doi: 10.13433/j.cnki.1003-8728.20200511
Citation: LI Yibing, WANG Huixiong, ZHUANG Kejia. Study on Multi-objective Optimization and High Efficiency Plunge Milling Experiment of Titanium Alloy for Aviation[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(12): 1921-1927. doi: 10.13433/j.cnki.1003-8728.20200511

航空钛合金高效插铣加工实验与多目标优化研究

doi: 10.13433/j.cnki.1003-8728.20200511
基金项目: 国家自然科学基金项目(51705385)与领域基金项目(61400020108)
详细信息
    作者简介:

    李益兵(1978−),教授,博士,研究方向为先进制造与智能优化、机械设备故障诊断,ahlyb@whut.edu.cn

    通讯作者:

    庄可佳,副教授,硕士生导师,博士, zhuangkj@whut.edu.cn

  • 中图分类号: TG506.9

Study on Multi-objective Optimization and High Efficiency Plunge Milling Experiment of Titanium Alloy for Aviation

  • 摘要: 钛合金整体叶盘是航空发动机的重要零部件,结构复杂,加工难度大。插铣加工因其轴向承受能力强和刚性大等特性,非常适合加工钛合金整体叶盘这类难加工、结构复杂的零部件。针对钛合金插铣加工效率的问题,采用响应曲面法设计插铣实验,建立切削力经验模型,以切削力和材料去除率为目标,采用NSGA-II算法进行多目标优化获得Pareto最优解。研究表明:切削力随主轴转速的增加而缓慢减小,随切削宽度、切削步距和每齿进给量的上升而增加;与实验初始参数组合相比,优化后的材料去除率提高了81.19%,而切削力减小了23.68%,达到了本研究的高效加工目标。
  • 图  1  实验装置

    图  2  切削力信号局部放大图

    图  3  切削力预测值与实验值

    图  4  残差随实验编号分布的散点图

    图  5  残差的正态性检验图

    图  6  nasFc的影响

    图  7  nfzFc的影响

    图  8  aefzFc的影响

    图  9  asfzFc的影响

    图  10  Pareto最优前沿

    表  1  TC4钛合金各元素的质量分数 %

    AlVFeNCOHTi
    6.04.00.30.050.10.20.0125余量
    下载: 导出CSV

    表  2  切削参数的编码及水平

    切削参数编码水平
    −2−1012
    n /(r·min−1 600 900 1200 1500 1800
    ae /mm 1.5 2.5 3.5 4.5 5.5
    as /mm 3 4 5 6 7
    fz /(mm·z−1 0.03 0.06 0.09 0.12 0.15
    下载: 导出CSV

    表  3  实验数据

    试验
    编号
    切削参数响应
    n/
    (r·min−1
    ae/
    mm
    as/
    (mm)
    fz/
    (mm·z−1
    MRR/
    (mm3·min−1
    Fc/
    N
    19002.540.061080340.08
    215002.540.061800317.82
    39004.540.061944639.48
    415004.540.063240544.98
    59002.560.061620490.38
    615002.560.062700332.76
    79004.560.062916788.16
    815004.560.064860651.30
    99002.540.122160555.78
    1015002.540.123600447.78
    119004.540.123888939.72
    1215004.540.126480830.52
    139002.560.123240776.58
    1415002.560.125400573.06
    159004.560.1258321240.38
    1615004.560.129720943.80
    176003.550.091890843.84
    1818003.550.095670549.84
    1912001.550.091620314.88
    2012005.550.0959401040.52
    2112003.530.092268386.22
    2212003.570.095292705.36
    2312003.550.031260316.44
    2412003.550.156300890.88
    2512003.550.093780604.80
    2612003.550.093780610.80
    2712003.550.093780627.96
    2812003.550.093780614.46
    2912003.550.093780620.58
    3012003.550.093780604.32
    下载: 导出CSV

    表  4  方差分析表

    参数自由度平方和均方FPp / %
    模型111534905139537269.07<0.00199.40
    n1122771122771236.74<0.0017.95
    ae17333847333841414.18<0.00147.49
    as1137795137795265.71<0.0018.92
    fz1468034468034902.51<0.00130.31
    n21160541605430.96<0.0011.40
    ae21102791027919.82<0.0010.67
    as215346534610.310.0050.35
    nas1132611326125.57<0.0010.86
    nfz15855585511.290.0030.38
    aefz1131301313025.32<0.0010.85
    asfz17216721613.910.0020.48
    误差1893355190.6
    合计291544239100
    R20.9940Radj20.9903Rpre20.9784
    下载: 导出CSV

    表  5  预测的20个Pareto最优解

    编号n /(r·min−1ae/mmas/mmfz/(mm·z−1MRR/(mm3·min−1Fc/N
    118005.50070.150207901376.625
    21047.7531.50030.030282.89349.022
    31770.9501.50070.0301115.699101.609
    41799.8482.91070.1249086.183595.178
    518002.84570.1299221.248602.860
    61799.9302.23170.0683836.536279.059
    718002.67670.1167831.853521.824
    81799.9933.23970.15012244.670776.658
    918002.81270.1117900.077525.778
    101799.9933.82470.15014453.69912.992
    1118002.80770.0976874.440465.791
    121799.9902.99270.1279569.469623.365
    1318003.79970.15014361.77907.047
    1418003.15870.13110395.610672.116
    151799.9954.03270.15015239.270964.629
    161799.9982.48070.1086771.806459.840
    171799.9893.63670.15013741.820867.632
    1818002.16570.0693746.181273.670
    191799.9945.26670.15019906.5701305.530
    2018005.31370.15020084.9201319.708
    下载: 导出CSV

    表  6  优化与实验中心点对比结果

    编号naeasfzMRRFcMRR增益/ %Fc增益/ %
    中心点12003.50050.0903780610.295
    518002.84570.1299221.248602.860143.950−1.220
    61799.9302.23170.0683836.536279.0591.500−54.280
    1118002.80770.0976874.440465.79181.190−23.680
    下载: 导出CSV
  • [1] 任军学, 田卫军, 姚倡锋, 等. 钛合金整体结构件高效插铣工艺实验研究[J]. 中国机械工程, 2008, 19(22): 2758-2761 doi: 10.3321/j.issn:1004-132X.2008.22.028

    REN J X, TIAN W J, YAO C F, et al. Experimental study on the overall structure of titanium alloy with high-effect plunge milling process[J]. China Mechanical Engineering, 2008, 19(22): 2758-2761 (in Chinese) doi: 10.3321/j.issn:1004-132X.2008.22.028
    [2] 程耀楠, 杨金龙, 冯新敏, 等. 钛合金插铣加工切削力试验及工艺参数优化[J]. 工具技术, 2018, 52(2): 65-68 doi: 10.3969/j.issn.1000-7008.2018.02.014

    CHENG Y N, YANG J L, FENG X M, et al. Experimental study on cutting force and process parameter optimization of plunge milling machining of titanium alloy[J]. Tool Engineering, 2018, 52(2): 65-68 (in Chinese) doi: 10.3969/j.issn.1000-7008.2018.02.014
    [3] LI Y, LIANG S Y, PETROF R C, et al. Force modelling for cylindrical plunge cutting[J]. The International Journal of Advanced Manufacturing Technology, 2000, 16(12): 863-870 doi: 10.1007/s001700070003
    [4] ALTINTAS Y, KO J H. Chatter stability of plunge milling[J]. CIRP Annals, 2006, 55(1): 361-364 doi: 10.1016/S0007-8506(07)60435-1
    [5] KO J H, ALTINTAS Y. Time domain model of plunge milling operation[J]. International Journal of Machine Tools and Manufacture, 2007, 47(9): 1351-1361 doi: 10.1016/j.ijmachtools.2006.08.007
    [6] DAMIR A, NG E G, ELBESTAWI M. Force prediction and stability analysis of plunge milling of systems with rigid and flexible workpiece[J]. The International Journal of Advanced Manufacturing Technology, 2011, 54(9-12): 853-877 doi: 10.1007/s00170-010-2982-y
    [7] 岳彩旭, 高海宁, 刘献礼. 基于动态切削力系数的插铣加工过程稳定性研究[J]. 机械工程学报, 2017, 53(17): 193-201 doi: 10.3901/JME.2017.17.193

    YUE C X, GAO H N, LIU X L. Research on the stability of the machining process based on the dynamic cutting force coefficient[J]. Journal of Mechanical Engineering, 2017, 53(17): 193-201 (in Chinese) doi: 10.3901/JME.2017.17.193
    [8] ZHUANG K J, ZHU D H, DING H. An analytical cutting force model for plunge milling of Ti6Al4V considering cutter runout[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(9-12): 3841-3852 doi: 10.1007/s00170-017-1078-3
    [9] ZHUANG K J, XU X H, XIAO R Q, et al. Mechanistic cutting force prediction model for plunge milling considering cutter runout[C]//Proceedings of ASME 2017 International Mechanical Engineering Congress and Exposition. Tampa: ASME, 2017
    [10] 任军学, 石凯, 姚倡锋, 等. TC11钛合金插铣参数对表面温度影响研究[J]. 机械科学与技术, 2009, 28(10): 1261-1265 doi: 10.3321/j.issn:1003-8728.2009.10.001

    REN J X, SHI K, YAO C F, et al. Effect of plunge milling parameters on surface temperature of titanium alloy TC11[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(10): 1261-1265 (in Chinese) doi: 10.3321/j.issn:1003-8728.2009.10.001
    [11] 任军学, 刘博, 姚倡锋, 等. TC11钛合金插铣工艺切削参数选择方法研究[J]. 机械科学与技术, 2010, 29(5): 634-637, +641

    REN J X, LIU B, YAO C F, et al. On plunge milling process parameters optimization for TC11 titanium alloy[J]. Mechanical Science and Technology for Aerospace Engineering, 2010, 29(5): 634-637, +641 (in Chinese)
    [12] ZHUANG K J, ZHANG X M, ZHANG D, et al. On cutting parameters selection for plunge milling of heat-resistant-super-alloys based on precise cutting geometry[J]. Journal of Materials Processing Technology, 2013, 213(8): 1378-1386 doi: 10.1016/j.jmatprotec.2013.03.007
    [13] DANIS I, WOJTOWICZ N, MONIES F, et al. Cutting conditions and surface integrity during dry plunge-milling of a wrought magnesium alloy[J]. Procedia Engineering, 2013, 63: 36-44 doi: 10.1016/j.proeng.2013.08.213
    [14] DANIS I, WOJTOWICZ N, MONIES F, et al. Influence of dry plunge-milling conditions on surface integrity of magnesium alloys[J]. International Journal of Mechatronics and Manufacturing Systems, 2014, 7(2-3): 141-156
    [15] FREDJ M, MONIES F, RUBIO W, et al. Influential parameters in plunge milling for titanium alloy Ti-6Al-4V[C]//Proceedings of International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing. Cartagena: Springer, 2019: 380-390
    [16] CAMPOSECO-NEGRETE C. Optimization of cutting parameters using response surface method for minimizing energy consumption and maximizing cutting quality in turning of AISI 6061 T6 aluminum[J]. Journal of Cleaner Production, 2015, 91: 109-117 doi: 10.1016/j.jclepro.2014.12.017
    [17] DIKSHIT M K, PURI A B, MAITY A. Experimental study of cutting forces in ball end milling of Al2014-T6 using response surface methodology[J]. Procedia Materials Science, 2014, 6: 612-622 doi: 10.1016/j.mspro.2014.07.076
  • 加载中
图(10) / 表(6)
计量
  • 文章访问数:  115
  • HTML全文浏览量:  61
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-19
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2022-12-05

目录

    /

    返回文章
    返回