留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大尺寸表面喷涂的交界区涂层均匀性分析

王毅 王国磊 李波 闫继宇 路敦民

王毅,王国磊,李波, 等. 大尺寸表面喷涂的交界区涂层均匀性分析[J]. 机械科学与技术,2022,41(11):1705-1712 doi: 10.13433/j.cnki.1003-8728.20200510
引用本文: 王毅,王国磊,李波, 等. 大尺寸表面喷涂的交界区涂层均匀性分析[J]. 机械科学与技术,2022,41(11):1705-1712 doi: 10.13433/j.cnki.1003-8728.20200510
WANG Yi, WANG Guolei, LI Bo, YAN Jiyu, LU Dunmin. Analysis of Coating Uniformity in Boundary Zone of Surface Spraying with Large-size[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1705-1712. doi: 10.13433/j.cnki.1003-8728.20200510
Citation: WANG Yi, WANG Guolei, LI Bo, YAN Jiyu, LU Dunmin. Analysis of Coating Uniformity in Boundary Zone of Surface Spraying with Large-size[J]. Mechanical Science and Technology for Aerospace Engineering, 2022, 41(11): 1705-1712. doi: 10.13433/j.cnki.1003-8728.20200510

大尺寸表面喷涂的交界区涂层均匀性分析

doi: 10.13433/j.cnki.1003-8728.20200510
基金项目: 国家自然科学基金项目(51975308,61403226)与工信部民机科研专项(MJ-2018-G-54)
详细信息
    作者简介:

    王毅(1997−),硕士研究生,研究方向为喷涂机器人应用, 15624961067@163.com

    通讯作者:

    路敦民,副教授,博士,dunminlu@163.com

  • 中图分类号: TP242.2

Analysis of Coating Uniformity in Boundary Zone of Surface Spraying with Large-size

  • 摘要: 针对喷涂机器人利用空气喷枪在大尺寸表面自动喷涂时面片交界区的涂层厚度均匀性难以保证问题,首先分析了导致涂层厚度偏差的原因,然后通过对平板匀速直行实验数据进行拟合,建立了一个具有喷涂起始、终止位置处涂层厚度分布描述的喷枪模型。在此模型基础上,对面片交界区的横向搭接参数进行了分析与数学最优值区间求解,得到了最优取值区间为0.2 ~ 0.4的结论。最终通过多组对比试验证明此参数准确,能够有效改善面片交界区的涂层厚度均匀性。
  • 图  1  大面积铝板喷涂轨迹

    图  2  横向搭接率为1时喷涂实物照片及厚度曲线图

    图  3  机器人空气喷枪结构爆炸图

    图  4  椭圆双贝塔模型

    图  5  喷涂区域划分示意图及对应厚度曲线图

    图  6  Dmax - x模型

    图  7  横向搭接率为0时交界区厚度曲线图

    图  8  使用横向搭接率修正后交界区厚度曲线图

    图  9  横向搭接率处于1 ~ 2区间内交接区厚度曲线图

    图  10  不同D1/D3值下$k $-$\sigma$曲线

    图  11  不同D2/D1值下$k$-$\sigma $曲线

    图  12  测量点与理论模型比照

    图  13  测量点与理论模型比照

    图  14  实测数据与理论值对照图

    图  15  壁管类产品仿真环境

    图  16  优化后交界区

    表  1  喷涂参数

    参数数值
    喷炬长轴长度/mm 300
    喷炬短轴长度/mm 200
    喷涂速度/(mm·s−1 400
    喷涂距离/mm 200
    控制最大厚度/μm 12
    下载: 导出CSV

    表  2  厚度分布函数标定参数

    标定参数 数值 函数参数 数值
    D1 40 a1 −1.338
    D2 12.5 b2 14.633
    D3 25 a2 −1.138
    x1 10 b2 112.274
    x2 46 c −2743.323
    x3 54
    下载: 导出CSV

    表  3  横向搭接率-标准差数据

    项目横向搭接率
    01/31/22/31
    标准差6.844.515.019.6310.9
    下载: 导出CSV
  • [1] BALKAN T, ARIKAN M A S. Surface and process modeling and off-line programming for robotic spray painting of curved surfaces[C]//ASME 1999 Design Engineering Technical Conferences. Las Vegas: American Society of Mechanical Engineer, 1999: 455-466
    [2] BALKAN T, SAHIR ARIKAN M A. Modeling of paint flow rate flux for circular paint sprays by using experimental paint thickness distribution[J]. Mechanics Research Communications, 1999, 26(5): 609-617 doi: 10.1016/S0093-6413(99)00069-5
    [3] 刘雪梅, 刘涛, 杨连生, 等. 平面喷涂漆膜厚度分布规律研究与搭接参数优化[J]. 表面技术, 2018, 47(9): 116-125

    LIU X M, LIU T, YANG L S, et al. Spray painting film thickness distribution on panel and optimization of width of paint film overlay[J]. Surface Technology, 2018, 47(9): 116-125 (in Chinese)
    [4] 张永贵, 黄玉美, 高峰, 等. 喷漆机器人空气喷枪的新模型[J]. 机械工程学报, 2006, 42(11): 226-233 doi: 10.3321/j.issn:0577-6686.2006.11.037

    ZHANG Y G, HUANG Y M, GAO F, et al. New model for air spray gun of robotic spray-painting[J]. Chinese Journal of Mechanical Engineering, 2006, 42(11): 226-233 (in Chinese) doi: 10.3321/j.issn:0577-6686.2006.11.037
    [5] 王国磊, 伊强, 缪东晶, 等. 面向机器人喷涂的多变量涂层厚度分布模型[J]. 清华大学学报(自然科学版), 2017, 57(3): 324-330

    WANG G L, YI Q, MIAO D J, et al. Multivariable coating thickness distribution model for robotic spray painting[J]. Journal of Tsinghua University (Science & Technology), 2017, 57(3): 324-330 (in Chinese)
    [6] 华霄桐, 张思敏, 刘兴杰等. 基于椭圆双β喷枪模型的喷涂轨迹优化[J]. 清华大学学报(自然科学版), 2020, 60(12): 985-992

    HUA X T, ZHANG S M, LIU X J, et al. Optimization of spraying trajectory based on elliptical double β spraying gun model[J]. Journal of Tsinghua University (Science & Technology), 2020, 60(12): 985-992 (in Chinese)
    [7] 缪东晶, 王国磊, 吴聊, 等. 自由曲面均匀喷涂的机器人轨迹规划方法[J]. 清华大学学报(自然科学版), 2013, 53(10): 1418-1423

    MIAO D J, WANG G L, WU L, et al. Trajectory planning for freeform surface uniform spraying[J]. Journal of Tsinghua University (Science & Technology), 2013, 53(10): 1418-1423 (in Chinese)
    [8] 曾勇. 大型复杂自由曲面的喷涂机器人喷枪轨迹优化研究[D]. 兰州: 兰州理工大学, 2011

    ZENG Y. The research on the spray tool trajectory optimization of painting robot for large and complex free-form curved surface[D]. Lanzhou: Lanzhou University of Technology, 2011 (in Chinese)
    [9] 陈伟. 喷涂机器人轨迹优化关键技术研究[D]. 镇江: 江苏大学, 2013

    CHEN W. Research on key techniques of robotic spray painting trajectory optimization[D]. Zhenjiang: Jiangsu University, 2013 (in Chinese)
    [10] 冯川, 孙增圻. 机器人喷涂过程中的喷炬建模及仿真研究[J]. 机器人, 2003, 25(4): 353-358 doi: 10.3321/j.issn:1002-0446.2003.04.015

    FENG C, SUN Z Q. Models of spray gun and simulation in robotics spray painting[J]. Robot, 2003, 25(4): 353-358 (in Chinese) doi: 10.3321/j.issn:1002-0446.2003.04.015
    [11] 安静, 华霄桐, 孙新, 等. 基于互补喷枪模型的平面喷涂方法[J]. 组合机床与自动化加工技术, 2020(10): 155-158

    AN J, HUA X T, SUN X, et al. Planar spraying method based on complementary spray gun model[J]. Modular Machine Tool & Automatic Manufacturing Technique, 2020(10): 155-158 (in Chinese)
    [12] 冯浩, 吴秋, 王小平. 基于椭圆双β模型的球面喷涂轨迹优化[J]. 机械设计与制造, 2016(4): 249-252+257 doi: 10.3969/j.issn.1001-3997.2016.04.065

    FENG H, WU Q, WANG X P. Optimization of spraying trajectory for spherical surface based on ellipse dual-β model[J]. Machinery Design & Manufacture, 2016(4): 249-252+257 (in Chinese) doi: 10.3969/j.issn.1001-3997.2016.04.065
    [13] FREUND E, ROKOSSA D, ROSSMANN J. Process-oriented approach to an efficient off-line programming of industrial robots[C]//Proceedings of the 24th Annual Conference of the IEEE Industrial Electronics Society. Aachen, Germany: IEEEE, 1998: 208-213.
    [14] SHENG W H, XI N, CHEN H P, et al. Part geometric understanding for tool path planning in additive manufacturing[C]//Proceedings of 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation. Computational Intelligence in Robotics and Automation for the New Millennium. Kobe: IEEE, 2003
    [15] CONNER D C, GREENFIELD A, ATKAR P N, et al. Paint deposition modeling for trajectory planning on automotive surfaces[J]. IEEE Transactions on Automation Science and Engineering, 2005, 2(4): 381-392 doi: 10.1109/TASE.2005.851631
    [16] 王海. 浅谈喷涂仿真在涂装同步工程分析中的导入及应用[J]. 现代涂料与涂装, 2020, 23(12): 52-54+66 doi: 10.3969/j.issn.1007-9548.2020.12.017

    WANG H. Introduction and application of spray simulation in painting synchronization engineering[J]. Modern Paint & Finishing, 2020, 23(12): 52-54+66 (in Chinese) doi: 10.3969/j.issn.1007-9548.2020.12.017
    [17] 张丽梅. 机器人施釉轨迹优化仿真技术研究[D]. 唐山: 华北理工大学, 2020

    ZHANG L M. Trajectory optimization and simulation research based on robot glazing[D]. Tangshan: North China University of Science and Technology, 2020 (in Chinese)
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  112
  • HTML全文浏览量:  54
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 刊出日期:  2023-02-04

目录

    /

    返回文章
    返回